А. А. Скоков*

МЕТОДЫ И СПОСОБЫ ПОВЫШЕНИЯ КАЧЕСТВА ИЗДЕЛИЙ

Тенденция к строительству многоэтажных жилых домов, привела к востребованности использования новых изделий. Вопрос правильного функционирования и комфортабельности выходит на одно из первых мест, особенно это касается коммуникаций. Постоянные перебои с отоплением и водоснабжением привели к созданию более модернизированных устройств для решения данных проблем. При реконструкции или устройстве новой системы водоснабжения обычно планируется размещение всех приборов потребления воды и необходимых конструктивных элементов. Большинство этих элементов системы водоснабжения имеют достаточно строгие требования к условиям эксплуатации, нарушение которых приводит к снижению срока службы.

Поддержание нормального давления воды в квартире является очень важным условием для безаварийного функционирования водопроводных труб, системы отопления и бытовых приборов, таких как котлы водонагревателей, стиральные, посудомоечные машины и так далее. Для снижения давления воды в системе водоснабжения специалисты рекомендуют встраивать в нее регуляторы давления (рис. 1). Их предназначением является защита от гидравлических ударов и поддержание стабильного напора в системе.

Рис. 1. Регулятор давления

 $^{^*}$ Работа выполнена под руководством д-ра техн. наук, проф. ФГБОУ ВО «ТГТУ» М. В. Соколова.

Назначение детали. Регулятор давления предназначен для стабилизации давления в системах холодного и горячего водоснабжения, включая питьевую воду, во всем диапазоне рабочих расходов и перекрытия магистрали в «безрасходном» режиме. РД поддерживает заданное заводской настройкой давление «после себя» при изменении входного давления и расхода воды.

Описание детали. Мембранный регулятор давления прямого действия с фиксированной настройкой выполнен по схеме с полной разгрузкой от входного давления, что позволяет эффективно стабилизировать давление на выходе регулятора в узком диапазоне значений. Для защиты установленного за РД оборудования от вибронагрузок вследствие автоколебаний довольно подвижных массивных частей регулятора последние задемпфированы прокачкой жидкости из специально организованной полости в проточную через канал демпфера. Таким образом, исключается срыв подпружиненной массы подвижных частей в колебательный режим при изменениях расхода жидкости через РД. Для предотвращения залива помещения в конструкции регулятора предусмотрен резиновый аварийный клапан, который перекрывает «дыхательное» отверстие в крышке РД в случае прорыва мембраны.

Технические характеристики РДЗ2М 0,25 [1]

Присоединительные размеры резьбы	1½»
Номинальный диаметр, мм	32
Номинальное давление, МПа	1,6
Температура воды, °С	до 120
Уровень заводской настройки выходного давления, МПа	0.25 ± 0.015
Давление после регулятора в «безрасходном» режиме, МПа	не более 0,4
Расход воды, л/с	от 0,05 до 5,0
Материал корпуса	сталь типа 12Х18Н10Т
Масса, кг	3,7

Проблема изготовления. Данная деталь изготавливалась на токарно-винторезном станке 16К20. Из-за снижения себестоимости, качества детали, затрат большого количества времени на ее изготовление [2 – 5], производство детали было переведено на станки с ЧПУ Linx 210. Таким образом для обслуживания станков понадобится меньшее количество персонала, что приведет к экономии финансовых затрат предприятия; уменьшились временные рамки изготовления, сократились энергозатраты на производство детали и себестоимости продукта.

Список литературы

- 1. **Информационный** портал фирмы AO «ТВЭСТ». URL: http://twest.tmweb.ru/catalog/regulyatory_davleniya/regulyator_davleniya_pryamogo_deystviya_rd32m_0_25/.
- 2. **Алтунин, К. А.** Разработка системы поддержки принятия решений выбора режимных и конструктивных параметров токарной обработки / К. А. Алтунин, М. В. Соколов. Тамбов : Студия печати Павла Золотова, 2016. 132 с.
- 3. **Алтунин, К. А.** Структура и адаптация модели представления знаний процесса токарной обработки: монография / К. А. Алтунин, М. В. Соколов, Р. В. Дякин. Тамбов: Студия печати Павла Золотова, 2017. 104 с.
- 4. **Алтунин, К. А.** Применение нейронных сетей для моделирования процесса токарной обработки / К. А. Алтунин, М. В. Соколов // Вестник Тамбовского государственного технического университета. 2016. Т. 22, № 1. С. 122 133.
- 5. **Altunin, K. A.** Development of Information Support for Intelligent Cad of Cutting Processes / K. A. Altunin, M. V. Sokolov // Advanced Materials and Technologies. 2017. № 2. C. 67 77.

Кафедра «Компьютерно-интегрированные системы в машиностроении» ФГБОУ ВО «ТГТУ»