К. С. Хромый, А. Ю. Ярмизина*

ТЕМПЕРАТУРНОЕ ПОЛЕ В ДВУХСЛОЙНОМ ПОЛИМЕРНО-МЕТАЛЛИЧЕСКОМ ИЗДЕЛИИ

Полимерно-металлические изделия с теплоизоляционными покрытиями на основе пенополиуретана (ППУ) получают методом заливки ППУ в пресс-форму («скорлупы» для трубопроводов, плиты, сэндвич-панели и т.д.).

Неразрушающий контроль качества таких изделий возможно осуществлять тепловым методом по теплофизическим свойствам (ТФС) слоев с использованием измерительного зонда (ИЗ). ТФС проявляются через температурный отклик (термограмму) исследуемого изделия на тепловое воздействие, которому подвергается объект в специально организованном эксперименте.

Цель данной работы — численное исследование температурного поля в методе неразрушающего теплового контроля (НК) двухслойных полимерно-металлических изделий. Исследуется стальное изделие в виде пластины с полимерным покрытием из ППУ.

Исследуемое изделие представляет собой конструкцию, состоящую из двух слоев с теплофизическими свойствами (ТФС): первый – λ_1 , a_1 , ρ_1 ; второй – λ_2 , a_2 , ρ_2 . Толщины слоев – h_1 , h_2 .

ТФС материалов, из которых изготовлен объект исследования, сведены в таблицу.

_

^{*} Работа выполнена под руководством д-ра техн. наук, профессора ФГБОУ ВПО «ТГТУ» Н. Ф. Майниковой.

Тепловое воздействие на изделие осуществляется с помощью нагревателя постоянной мощности, выполненного в виде диска, встроенного в ИЗ. Подложка ИЗ выполнена из теплоизоляционного материала — рипора. Радиус зонда — $R_{\rm ИЗ}$ (рис. 1). Размеры подложки ИЗ и металлической пластины подобраны так, что их можно считать полуограниченными. Температура в точках контроля поверхности полимерного покрытия измеряется с помощью термоприемников (ТП1, ТП2). В ходе измерения регистрируют термограммы — зависимости температуры от времени.

Наиболее сложной задачей при создании новых тепловых методов НК является разработка физико-математических моделей, адекватно описывающих теплоперенос [1, 2].

В основе метода НК лежат предположения, что на термограммах имеются участки (рабочие), для которых обеспечивается высокая точность совпадения с результатами вычислительных экспериментов по аналитическим моделям. Причем, этим участкам соответствуют тепловые режимы опыта, вышедшие на стадию регуляризации. В нашем случае можно проводить термический анализ, основываясь только на участках термограмм, соответствующих регуляризации теплового режима в локальной области объекта исследования, расположенной вблизи нагревателя и термоприемника ТП1.

Полученное ранее решение краевой задачи нестационарной теплопроводности в системе двух тел, нагреваемых через бесконечный плоский нагреватель тепловым потоком постоянной мощности, в форме,

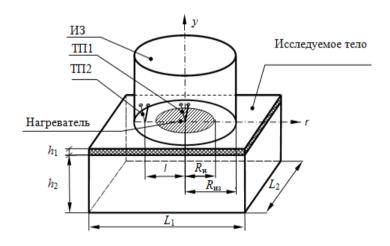


Рис. 1. Измерительная схема метода

Таблица. Теплофизические свойства материалов

Метка блока	Теплопровод- ность λ, Вт/(К·м)	Теплоемкость c , Дж/(кг·К)	Плотность ρ , $\kappa\Gamma/M^3$
Покрытие (пенополиуретан)	0,041	1470	80
Нагреватель (медь)	400	385	8890
Подложка зонда (рипор)	0,028	1270	50
Пластина (Сталь 40)	47	462	7800

пригодной для использования на рабочем участке термограммы, может быть использовано для получения математических выражений для расчета $T\Phi C$ или толщины покрытий [1].

Моделирование температурных полей с целью выявления режима регуляризации выполнено методом конечных элементов с помощью пакета программ Elcut Student.

Составлены описание задачи, ее геометрия, свойства сред, источники тепла, граничные и другие условия.

Выполнено построение сетки конечных элементов.

На рисунке 2 представлено распределение температуры по толщине покрытия и подложки ИЗ на момент времени – 300 с.

Размеры ИЗ: высота подложки -20 мм; радиус -25 мм. Двухслойное изделие с толщинами: теплоизоляционного пенополиуретанового покрытия -1 мм, металлического основания -10 мм. Нагреватель из меди: радиус -10 мм, высота -1 мм.

Численно определяем температуру в точках, расположенных на оси нагревателя: на границе раздела «подложка ИЗ-теплоизоляционное полимерное покрытие из ППУ»; в середине слоя покрытия; на границе раздела «покрытие-металл».

Полученные результаты позволяют сделать вывод о кратковременном одномерном распространении тепла по толщине пенополиуретанового покрытия и реализации режима регуляризации теплового процесса для локальной области изделия [2].

Таким образом, появляется возможность выделить на термограммах рабочие участки, характеризующиеся независимостью от времени отношения теплового потока в любой точке покрытия к потоку тепла на его поверхности. Аналитические зависимости, описывающие термограмму на рабочих участках, получены на основании решения соответствующих краевых задач теплопроводности. Подробные описания алго-

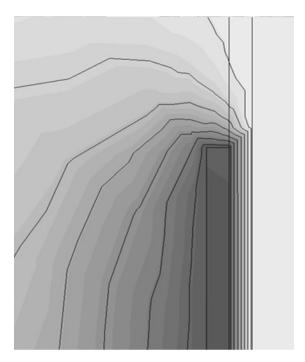


Рис. 2. Распределение температуры по толщине покрытия из пенополиуретана и подложки зонда из рипора

ритмов получения и применения данных решений для расчета $T\Phi C$ слоев или определения толщины покрытия представлены в работе [2].

Список литературы

- 1. *Теоретическое* обоснование теплового метода неразрушающего контроля двухслойных изделий / И. В. Рогов, Н. П. Жуков, Н. Ф. Майникова, Н. В. Лунева // Вопросы современной науки и практики. Университет им. В. И. Вернадского. -2009. N 9. C. 93-99.
- 2. *Моделирование* теплопереноса в методе неразрушающего контроля двухслойных материалов / Н. П. Жуков, Н. Ф. Майникова, И. В. Рогов, А. О. Антонов // Вестник Тамбовского государственного технического университета. -2013. T. 19, № 3. C. 506 511.

Кафедра «Энергообеспечение предприятий и теплотехника» ФГБОУ ВПО «ТГТУ»