Д.В. Леонов, Е.В. Бордак

АППРОКСИМАЦИЯ ЗАВИСИМОСТИ СТРУКТУРНО-МЕХАНИЧЕСКИХ СВОЙСТВ КОНФЕТ ОТ РЕЦЕПТУРНЫХ И РЕЖИМНЫХ ПАРАМЕТРОВ*

Нахождение и математическое описание закономерностей изменения свойств конфетных масс на различных стадиях процесса получения позволит решать стоящие перед отраслью задачи по повышению качества и стабильности выпускаемой продукции, разработки высокоэффективных и малоотходных технологий, что актуально для создания нового поколения кондитерских изделий. Использование новых видов добавок регулирующих консистенцию, увеличивающих сроки годности и улучшающих органолептические показатели в производстве конфет приводит к изменению физикохимических и структурно-механических свойств полуфабрикатов и готовой продукции.

Для комплексной оценки качества конфетных масс можно использовать реологические показатели, поскольку они зависят от совокупности рецептурных (химический состав, дисперсность, соотношение рецептурных ингредиентов и др.) и режимных параметров (температура, скорость деформации и др.). Оценка реологических показателей особенно важна для желейных масс, так как в их рецептуру входят различные студнеобразователи, буферные соли, незначительное варьирование концентрации которых приводит к существенному изменению структурно-механических и органолептических свойств желейных масс и студней.

Для экспериментальных исследований использовались желейные массы, приготовленные на основе трех видов пектинов, используемых в качестве студнеобразователей (Унипектин PG DS, Classic CS 401, Classic AS 507,) и цитрата натрия, в качестве буферной соли.

Реологические свойства желейных масс определяли с помощью ротационного вискозиметра HAAKE VT7R-plus с устройством термостатирования в диапазоне скоростей деформации от 0,3 до 60 об/мин, такой диапазон учитывает все воздействия на массу в процессе получения [1]. Снятие и обработка полученных экспериментальных данных осуществлялись с помощью персонального компьютера посредством программного обеспечения RheoWin 3.

Для определения прочности желейных студней использовался стандартный метод, основанный на использовании прибора Валента. Показания этого прибора носят эмпирический условный характер и выражают нагрузку на поверхность испытуемого студня, под действием которой студень продавливается. Результаты, полученные на приборе, сопоставимы с результатами определений прочности студня другими методами.

Для нахождения аппроксимирующих зависимостей использовался специально разработанный для этих целей программный комплекс [2]. Программа позволяет в режиме диалога подобрать аппроксимирующую зависимость в виде комбинации ряда стандартных функций, наиболее часто употребляемых в обработке экспериментальных данных (экспоненты, полиномы, дробные степени и др.).

В общем виде зависимость прочности пектиновых студней η от вязкости желейных масс μ и скорости деформации σ можно представить как функцию $\eta = f(\mu, \sigma)$, переходя к общему виду искомой зависимости z = f(x, y).

Следует отметить, что обрабатываются N экспериментов, каждый из которых соответствует фиксированному значению y, а параметр x измеряется m_i раз, i=1,...,N.

Искомая зависимость z = f(x, y) после прохождения двух этапов аппроксимации имеет вид $z = f_1(f_2(S; y, y), r)$, где S – матрица $m \times I$, по столбцам которой расположены векторы $\bar{s}^{(j)}$.

При нахождении зависимости прочности пектиновых студней η от вязкости желейных масс μ и скорости деформации σ по полученным экспериментальным данным на первом этапе для каждого значения скорости деформации были найдены аппроксимирующие зависимости прочности от вязкости, которые по результатам расчета программы описываются полиномом третьей степени: $\eta(\mu) = a + b\mu + c\mu^2 + d\mu^3$. Полученные значения коэффициентов a, b, c, d для различных скоростей деформации представлены в таблице.

^{*} Работа выполнена под руководством канд. техн. наук, доц. С.Г. Толстых.

Значения коэффициентов a, b, c, d

s = 10		s = 20		s = 30		s = 50		s = 60	
a	-802,565	а	-1072,68	а	-794,19	а	-519,555	a	-291,196
b	6859,91	b	10 379,5	b	9285,19	b	7692,7	b	5207,85
С	-9155,35	С	-17 859,6	С	-16 968,7	С	-13059	С	-4103,97
d	4053,12	d	10 100,6	d	10 420,3	d	6880,41	d	-3292,98

На втором этапе осуществлялась аппроксимация зависимости найденных коэффициентов полинома от скорости деформации, которая также представляет собой полином третьей степени. В результате получились следующие зависимости:

$$a(\sigma) = -381,43 - 63,889\sigma + 2,0343\sigma^{2} - 0,0158\sigma^{3};$$

$$b(\sigma) = 1885,8 + 676,27\sigma - 16,617\sigma^{2} + 0,1052\sigma^{3};$$

$$c(\sigma) = 1643 - 1377\sigma + 25,58\sigma^{2} - 0,0719\sigma^{3};$$

$$d(\sigma) = -1549,8 + 626,68\sigma - 1,9162\sigma^{2} - 0,1492\sigma^{3}.$$

В итоге была получена зависимость прочности пектиновых студней от вязкости желейных масс и скорости деформации:

$$\eta(\mu, \sigma) = a(\sigma) + b(\sigma)\mu + c(\sigma)\mu^2 + d(\sigma)\mu^3.$$

Представленная методика использовалась также для нахождения аппроксимации зависимостей вязкости желейных масс от скорости деформации при различных соотношениях концентраций пектина и буферных солей; вязкости помадных масс от концентрации и дисперсности фитодобавок [3].

Выявление закономерностей изменения свойств конфетных масс в процессе технологической переработки позволит уточнять рецептуры, режимы производства и обеспечить стабильные потребительские характеристики различных видов конфет.

СПИСОК ЛИТЕРАТУРЫ

- 3. Основы практической реологии и реометрии / Г. Шрамм ; пер. с англ. И.А. Лавыгина. М. : КолосС, 2003.
- 4. Программа для аппроксимации экспериментальных данных нелинейными зависимостями в интерактивном режиме : свидетельство о государственной регистрации программы для ЭВМ № 2009610186 / C.C. Толстых, С.Г. Толстых, Е.И. Муратова.
- 5. Муратова, Е.И. Определение температурных режимов при производстве новых видов конфет / Е.И. Муратова, П.М. Смолихина, Д.В. Леонов // Вестник Тамбовского государственного технического университета. -2008. -№ 3. C. 667 669.

Кафедра «Технологическое оборудование и пищевые технологии»