М.Ю. Субочева, М.М. Загорная, Т.П. Дьячкова, Н.С. Главатских

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ДОБАВОК НАНОСТРУКТУРНЫХ МАТЕРИАЛОВ НА КОЛОРИСТИЧЕСКУЮ КОНЦЕНТРАЦИЮ АЗОПИГМЕНТОВ*

Колористическая концентрация азопигментов и красителей зависит от многих физических и химических факторов. Наличие водорастворимых примесей в составе паст (сульфаты калия, натрия, хлориды натрия и другие, а также свободная и связанная серная кислота) органических пигментов приводят к уменьшению колористической концентрации, что заметно снижает качество красителя.

Из всего многообразия методов удаления водорастворимых примесей из осадков следует выделить репульпацию, промывку на фильтре и декантацию [1].

Декантация является одним из самых простых и бережных к структуре кристаллов методов очистки, суть которого заключается в разделении твердой и жидкой фаз отстаиванием. Для увеличения скорости разделения фаз и повышения растворимости солей использовались структурированная вода и наноматериалы. Отмывка азопигментов велась с использованием воды трех различных видов структуризации.

Структурированная вода – это вода с упорядоченными внутренними взаимодействиями или это жидкий кристалл, в котором основным структурным компонентом является молекула воды (H_2O). За счет возможности образования водородных взаимосвязей молекулы способны соединяться между собой в ассоциаты, или более устойчивые кластеры. Вид элементарного кластера и определяет свойства воды. Поэтому, меняя кластеры (структуру) воды с помощью различных полей, можно изменять ее свойства [2].

Экспериментальные исследования по оценке влияния структуры воды проводились на пастах азопигментов: пигмент оранжевый Ж (pigment orange 13 № 21110), пигмент зеленый Б (pigment green № 10006), пигмент черный С, пигмент алый 2С, лак рубиновый 2СК (pigment red 57:1 № 15850). Исходная суспензия пигмента вначале отстаивалась, а фильтрат декантировался. Далее отмывку пасты вели шестикратными объемами воды, равными объему пасты, с добавлением наноструктурированных металлов. Промывные воды анализировали на наличие водорастворимых примесей методом определения удельной электрической проводимости раствора на кондуктометре МС226.

По результатам экспериментальных данных, представленных в табл. 1 и 2, была выбрана вода, структура которой обеспечивала максимальную растворимость солей и как следствие увеличивала колористическую концентрацию.

Наноматериалы, введенные в любую из сред, изменяют ее свойства. Растворимость солей в структурированной воде наращивалась за счет введения материалов первой, шестой и восьмой групп периодической системы Д.И. Менделеева в наноструктурной форме [3]. Результаты исследований по влиянию нанодобавок на растворимость примесей в промывной воде с наноструктурированными материалами представлены в табл. 3 и 4.

Наибольшая эффективность по удалению водорастворимых солей из паст азопигментов получена с использованием шестой и восьмой групп.

Результаты экспериментальных исследований подтвердили влияние структуры воды и наноматериалов на относительную красящую способность и растворимость солей в пастах органических пигментов.

1. Зависимость электропроводности промывных вод от структуры воды

No	Первая вода	Вторая вода	Третья вода	
№ опыта	Электропроводность, мкрСим			
Фильтрат	19800	19800	19800	
1	6534	6468	7194	
2	2580	2904	2772	
3	1320	1386	1234,2	
4	891	838,2	765,6	
5	667	792	660	
6	594	554,4	429	

2. Влияние структуры воды на колористическую концентрацию азопигментов

Вода	Наименование опыта	Относительная красящая способность, I %	Электропроводность пасты, мкрСим
1	Образец 1	103,4	138,6
2	Образец 2	104,5	114,2
3	Образец 3	105,8	104,9

^{*} Работа выполнена под руководством д-ра техн. наук, проф. А.И. Леонтьевой.

3. Зависимость электропроводности промывных вод от нанодобавок

No	1 добавка	2 добавка	3 добавка	4 добавка	5 добавка	6 добавка
опыта	Электропроводность, мкрСим					
Фильтрат	21 780	21 780	21 780	21 780	21 780	21 780
1	8172	8250	8712	9702	8282	7788
2	1504,8	1320	1419	1392	1426	1174,8
3	732,6	693	633,6	706,2	645	534,6
4	607,2	574,2	528	594	521,4	448,8

4. Влияние нанодобавок на колористическую концентрацию азопигментов

Нанодобавка	Наименование опыта	Относительная красящая способность, %	Электропроводность пасты, мкрСим
1	Образец 4	103,3	77,5
2	Образец 5	103,2	102,9
3	Образец 6	103,1	101,6
4	Образец 7	104,9	88,4
5	Образец 8	106,2	88,4
6	Образец 9	106,5	89,8

СПИСОК ЛИТЕРАТУРЫ

- 4. Малиновская, Т.А. Разделение суспензий в промышленности органического синтеза / Т.А. Малиновская. М. : Химия, 1971. 320 с.
 - 5. Зенин, С.В. Информационная система воды / С.В. Зенин // Ежегодник «Дельфис-2006». 2006. С. 211 216.
- 6. Егорова, Е.М. Наночастицы металлов: их свойства и возможная роль в живых организмах / Е.М. Егорова // Ежегодник «Дельфис-2006». -2006. -2006. -2006.

Кафедра «Химические технологии органических веществ»