В.Л. Дедов

Экспериментальные исследования зависимости деформируемости грунтов от плотности и предварительного уплотнения при повторных нагрузках

Опыты с образцами связного грунта (суглинок) выполняли на компрессионном приборе КПр-1 и разрывной машине ИР 5057-50, переведенной в режим сжимающего нагружения.

В ОПЫТАХ НА ПРИБОРАХ КПР-1 ПРИМЕНЯЛИ ОБРАЗЦЫ ГРУНТА С НАРУШЕННОЙ СТРУКТУРОЙ, КОТОРЫЕ ПРИГОТАВЛИВАЛИ ПО [1]. ОБРАЗЦЫ НАРУШЕННОЙ СТРУКТУРЫ ГОТОВИЛИ СЛЕДУЮЩИМ ОБРАЗОМ: ИЗВЕСТНУЮ МАССУ ГРУНТА ЗАДАННОЙ ВЛАЖНОСТИ УКЛАДЫВАЛИ В ОБОЙМУ СЛОЯМИ ПО 0,5 СМ И УПЛОТНЯЛИ ТРАМБОВКАМИ.

ОБРАЗЦЫ ГРУНТА ИСПОЛЬЗОВАЛИ ИЗ КРАСЬНЕНСКОГО КАРЬЕРА Г. ТАМБОВА СО СЛЕДУЮЩИМИ ХАРАКТЕРИСТИКАМИ, ОПРЕДЕЛЕННЫМИ ПО [2]: ρ_S = 2,66 Г/СМ³, W_P = 0,132, W_L = 0,245, I_L = 0,389, I_P = 0,113. ОТБОР ПРОВОДИЛСЯ В СООТВЕТСТВИИ С [3].

Эксперименты на повторную нагрузку проводили на компрессионных приборах КПр-1 по следующей методике. Стационарную установку, подготовленную в соответствии с руководством по эксплуатации, нагружали с помощью разрывной машины ИР 5057-50 до определенного уровня ($\sigma_{\text{max}} = 0,3$ МПа). После выдержки нагрузки при максимальном давлении производили разгрузку до σ_{min} . Дальнейшее циклирование осуществлялось в стационарном режиме на разрывной машине ИР 5057-50, переведенной в режим циклического сжатия. Под стационарном режимом понимается такой, при котором основные параметры (σ_{max} , $\rho_c = \sigma_{\text{min}}/\sigma_{\text{max}}$, f_c) остаются постоянными во времени циклирования.

Принималось 100 циклов нагружения. Значения деформаций определяли после 1; 2; 5; 10; 20; 30; 50; 100 цикла «нагрузки-разгрузки». Частота цикла f_c = 2 цикла/мин. Коэффициент асимметрии цикла (ρ_c) равняется 0; 0,2; 0,4; 0,6; 0,8.

Влияние повторных нагружений на деформированность грунта оценивали по [4], коэффициентом повторности $K_s = \varepsilon_c/\varepsilon_s$ (табл. 1) и рис. 1 (ε_c и ε_s – относительные деформации образцов грунта при циклическом и статическом действии нагрузки, соответственно).

1 ЗАВИСИМОСТИ ВЕЛИЧИН ДЕФОРМАЦИЙ ОТ ЧИСЛА ЦИКЛОВ нагружения-разгружения

$N_{\underline{0}}$	Условия приготовления образцов	ρ_c	K_s при количестве циклов рав-						
кривой			ном						
на			2	5	10	20	30	50	100
графике	1	_							
1	Не выдерживался под нагрузкой, $W = 0,17$	0	0,0	0,1	0,1	0,2	0,3	0,4	0,5
		0.2	5	0	5	7	3	1	8
2		0,2	0,0	0,1	0,2	0,3	0,4	0,5	0,7
3		0.4	7	1	0	4	0	1	2
3		0,4	0,0	0,1	0,2	0,3	0,4	0,5	0,7
4		0,6	0,1	0,1	0,2	0,3	0,3	0,5	0,8
4		0,0	0,1	4	4	2	9	2	0,8
5		0,8	0,1	0,2	0,3	0,4	0,5	0,6	1,0
3		0,0	4	1	2	1	0,5	8	1,0
6	Не выдержи-	0	0,0	0,0	0,0	0,0	0,1	0,1	0,1
Ü			4	5	5	9	3	5	7
7		0,2	0,0	0,0	0,0	0,0	0,1	0,1	0,2
·		- 9	2	5	6	9	3	6	2
8	вался под на-	0,4	0,0	0,0	0,1	0,1	0,2	0,2	0,3
	грузкой, W = 0,12		4	9	2	7	1	4	1
9		0,6	0,0	0,0	0,1	0,1	0,2	0,2	0,3
			4	8	1	5	0	6	5
10		0,8	0,0	0,0	0,1	0,1	0,2	0,2	0,3
			5	7	1	4	0	6	4
11	Выдерживал-	0	0,0	0,0	0,1	0,1	0,1	0,2	0,2
			5	8	3	7	9	1	9
12	ся	0,2	0,0	0,0	0,0	0,1	0,1	0,1	0,1
	14 суток под	0.6	5	6	7	0	2	4	6
13	давлением	0,6	0,0	0,0	0,0	0,0	0,0	0,0	0,1
1.4	$σ = 0.3 \text{ M}\Pi a$	0.0	1	3	5	6	7	9	1
14		0,8	0	0,0	0,0	0,0	0,0	0,0	0,0
				1	2	2	3	4	3
δ, мм								5	
0,9						/		4	
0,8							/	<u>3</u>	
0,7		<u> </u>				//	X		
			<u> </u>					1	
0,6		1					7		

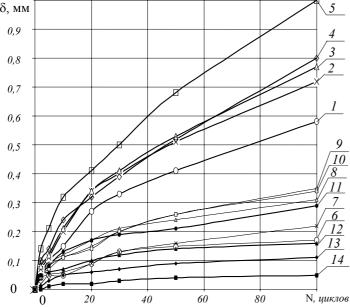


Рис. 1 Зависимости величин деформаций от числа циклов нагружения разгружения (цифры на графике соответствуют табличным)

Было произведено три серии опытов при влажности W = 0,17 (опыты 1-5), W = 0,12 (опыты 6-10) проводили без выдержки под нагрузкой; W = 0,12 (опыты 11-14) проводили с выдержкой под нагрузкой 1200 H (соответствует давлению 0,3 МПа) в течении 14 суток. После этого деформации в грунте стали менее 0,01 мм за 24 часа, что в соответствии с [1] считается за стабилизацию деформаций.

Выводы

- 1 При повторных нагружениях без предварительной выдержки грунта под нагрузкой с увеличением коэффициента асимметрии цикла влияние повторных нагружений на деформацию образцов грунта увеличивается.
- 2 При повторных нагружениях с предварительной выдержкой грунта под давлением σ_{max} до стабилизации грунта, с увеличением коэффициента асимметрии цикла влияние повторных нагружений на деформацию образцов грунта резко снижается, что соответствует данным [4 и 5].
- 3 Следовательно, налицо различие в работе уплотненного грунта при повторных нагружениях от разуплотненного.

СПИСОК ЛИТЕРАТУРЫ

- 1 ГОСТ 30416—96. Межгосударственный стандарт. Грунты лабораторные. Испытания. Межгосударственная научно-техническая комиссия по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС), 1984. 23 с.
- 2 ГОСТ 5180–84. Грунты. Методы лабораторного определения физических характеристик. Издание официальное. Государственный комитет СССР по делам строительства, 1984. 6 с.
- 3 ГОСТ 12071–84 Грунты. Отбор, упаковка, транспортирование и хранение образцов. Издательство стандартов. М., 1996. 12 с.
- 4 Евдокимцев О.В. Влияние повторности нагружения на перемещения и несущую способность основания. Автореф. дис. ... канд. техн. наук. Тамбов, 2001.
- 5 Леденев В.В. Основание и фундаменты при сложных воздействиях. Тамбов: Тамб. гос. техн. унт, 1995. 400 с.