Власюк Д. А.

СПОСОБ ПОЛУЧЕНИЯ НАНОМАТЕРИАЛОВ МЕТОДОМ ПИРОЛИТИЧЕСКОГО РАЗЛОЖЕНИЯ УГЛЕРОДОСОДЕРЖАЩИХ ГАЗОВ

Работа выполнена под руководством к.т.н, доц. Шеллохвостова В. П.

ТГТУ, Кафедра «Материалы и технология»

Углеродные нанотрубки (НТ) с малым числом слоев пердставляют собой материал, имеющий потенциально широкие области применения. Нанотрубки получают испарением и дисублимацией графита, каталитическим разложением или пиролизом углердосодержащих реагентов. Наиболее перспективным для крупномасштабного применения считается пиролитический метод, который может быть реализован в простых по конструкции аппаратах и легко масштабируется. Самым удобным источником углерода является пропан, который подвергается некаталитическому пиролизу при низких температурах и, следовательно, при оптимальных условиях не вносит примесей аморфного углерода [1].

Была собрана установка для получения нановолокон, представленная на рисунке 1, состоящая из рабочей камеры (16), кварцевой трубки, в которой находится катализатор(2), термопары (1.1), необходимой для контроля температуры, подключенной к вольтметру(12), на рабочую камеру установлен нагревательный элемент(3), подключенный к блоку питания(4). По трубке (14) из рабочей камеры производится отвод отработанных газов через водный затвор (13). В рабочую зону по трубке подается газ (водород и пропан). Для работы водород получают в электролизере (11), который подключен к блоку питания(12). Газ проходит систему очистки, состоящую из водяного затвора (9) (для осаждения паров щелочи), колбы с концентрированной кислотой (10) (в которой обезвоживаются пары газа), камеры для получения рабочей смеси газов(7), к которой подключен баллон с газом(8), колба с селикагелем(6) (необходимая для абсорбирования вредных примесей).

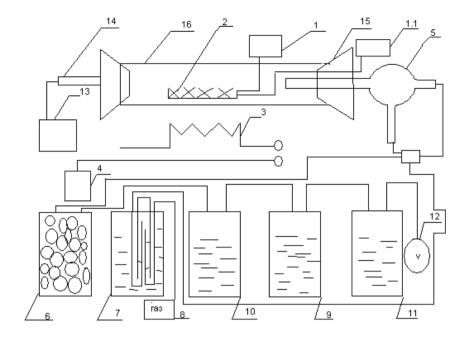


Рис. 1. Схема установки

1. вольтметр, 1.1 термопара ,2. катализатор (метан пропан), 3. нагревательный элемент 4. блок питания 5. тройник для подачи водорода и углеродосодержащего газа, 6. селикогель 7. камера для получения рабочей смеси газов, 8. балон с газом, 9. водный затвор 10. кислота, 11. электролизер, 12. вольтметр, 13. водный затвор, 14. трубка, 15 входной штуцер, 16. рабочая камера

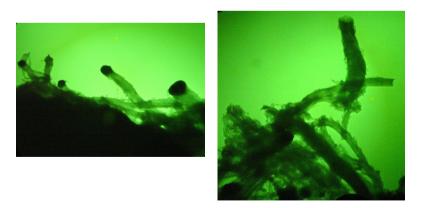


Рис. 2. Фотографии нановолокон, полученных методом пиролитического разложения углеродосодержащих газов

Метод получения нанообъектов

В качестве материала для синтеза катализатора была выбрана соль нитрата никеля, которую помещали в кварцевую трубку, через которую пропускали в течение 5 минут водород, затем 5 минут нагревали до температуры 500°С и охлаждали до комнатной температуры без выдержки в нагретом состоянии. После извлечения подложки с катализатором производили ее взвешивание. Взвешенную подложку с катализатором помещали в реактор, производили предварительную продувку водородом, пропускали через реактор смесь пропанбутана с водородом, рабочую зону нагревали до 600-650С, перемещали подложку с катализатором в рабочую зону, выдерживали 10 минут и охлаждали с продувкой аргоном. Извлекли подложку с катализатором и синтезированным на нем материалом, взвешивали, определили процент выхода (отношение массы продукта к массе начального катализатора оказывалось в пределах 5-7).

Исследовали полученные продукты электронной микроскопией по методике, описанной в [2]. В качестве поддерживающей подложки использовали углеродную пленку толщиной 20-30 нм, которую получали напылением в вакууме на свежий скол соли NaCl из угольной электрической дуги. Полученную пленку отделяли от соли путем помещения в дистиллированную воду. Углеродную пленку с помощью петли или сетки переносили в объем с дистиллированной водой для отмывки от соли, далее ее переносили в суспензию, содержащую синтезированные материалы. Пленку, находящуюся на поверхности воды, подлавливали медной сеткой (с ячейками 200х200мкм), сушили и исследовали в электронном микроскопе ЭМВ-100А с увеличениями 20-100 тысяч. Структура синтезированных волокон показана на рисунке 2, средний размер волокон 60-80 нм.

Таким образом, разработана и изготовлена установка пиролитического синтеза нановолокон, проведены пробные эксперименты, исследованы синтезированные материалы.

Список литературы

- 1. Раков Э.Г. химическая технология.2003.№10.с.2
- 2. «Новые идеи молодых ученых в науке XXI века», выпуск 4,с140.Тамбов, ТГТУ, 2006.