## Дедов В. Л., Забродин С. В.

## ВЛИЯНИЕ ПОВТОРНЫХ НАГРУЖЕНИЙ НА ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ СВЯЗНЫХ ГРУНТОВ

Работа выполнена под руководством к.т.н., доц . Евдокимцева О. В.

ТГТУ, Кафедра «Конструкции зданий и сооружений»

Действия повторных нагрузок приводит к изменению прочностных и деформационных характеристик грунтов. Для изучения влияния повторных нагрузок на прочностные характеристики связных грунтов проведены серии экспериментов. Опыты выполнены в лаборатории механики грунтов ТГТУ на сдвиговом приборе ПСГ-1. В качестве влияющих параметров использовали:

- уровень нагружения  $\overline{F} = 0.4...0.9$ ;
- коэффициент асимметрии цикла  $\rho_c$ =0...0,8;
- количество циклов нагружения N<sub>c</sub>=1...100.

На основании выполненных исследований сделан вывод о изменении значений прочностных характеристик глинистых грунтов (угол внутреннего трения ( $\phi$ ) и сцепление (c)) после действия повторных нагрузок. Динамика изменения неоднозначна. Если при увеличении уровня нагружения в пределах  $\overline{\tau}=0,4...0,6$  наблюдается плавный рост с и падение  $\phi$ , то при  $\overline{\tau}=0,6...0,7$  рост с и падение  $\phi$  уже носит скачкообразный характер, достигая своего экстремума при  $\overline{\tau}=0,7...0,75$ ; затем происходит также скачкообразное падение с до нуля при  $\overline{\tau}=0,9$  и рост  $\phi$  до 45° при  $\overline{\tau}=0,8...0,9$  ( рис.1).

Изменение значений прочностных характеристик в результате действия повторных нагрузок делает необходимым учет этих изменений в расчетах несущей способности оснований.

В соответствии с [1] расчет по несущей способности производится исходя из условия:

$$F \leq \gamma_c \cdot F_u / \gamma_n,$$
 (1)

Вертикальную составляющую силы предельного сопротивления  $F_{uc}$  в случае повторного нагружения можно определить по формуле:

$$F_{uc} = b' \cdot l' \cdot (N_{\gamma} \cdot \xi_{\gamma} \cdot b' \cdot \gamma_{l} + N_{q} \cdot \xi_{q} \cdot \gamma_{l}' \cdot d + N_{c} \cdot \xi_{c} \cdot c_{lc}), \tag{2}$$

где все компоненты определяются по указаниям [1], кроме  $N_{\gamma},\ N_{q},\ N_{c},\ c_{Ic}.$ 

Коэффициенты  $N_{\gamma}$ ,  $N_{q}$ ,  $N_{c}$  – необходимо определять по также в соответствии с методикой [1], но по значениям угла внутреннего трения,

пересчитанным с учетом повторного нагружения. Значение сцепления  $c_{Ic}$  определяется также с учетом повторных нагружений.

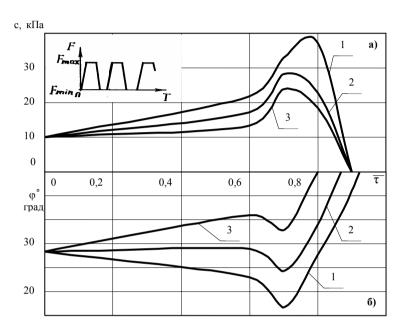



Рис. Зависимости сцепления (a) и угла внутреннего трения ( $\bar{b}$ ) супеси (c=10 кПа ,  $\phi$  = 28,25°) от уровня нагружения  $\overline{\tau}$  , при  $\rho$ : 1–0; 2–0,25; 3–0,5

## Список литературы

1. СНи<br/>П 2.02.01.83\* "Основания зданий и сооружений", Москва 1995.