ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

ИЗДАТЕЛЬСТВО ТГТУ

Рекомендовано Редакционно-издательским советом университета

Рецензент Доктор технических наук, профессор B.H. Чернышов

> Составители: Е.Б. Винокуров, В.М. Иванов, Е.А. Печагин

Т338 Теоретические основы электротехники. Электрические цепи : лабораторные работы / сост. : Е.Б. Винокуров, В.М. Иванов, Е.А. Печагин. – Тамбов : Изд-во Тамб. гос. техн. ун-та, 2008. – 44 с. – 100 экз.

Даны сведения, необходимые для выполнения лабораторных работ по дисциплине «Теоретические основы электротехники» по разделу «Электрические цепи». Предназначены для студентов 2 курса специальностей 140211, 110302 всех форм обучения.

УДК 621.3 ББК ₂21я73-5

© ГОУ ВПО «Тамбовский государственный технический университет» (ТГТУ), 2008 Министерство образования и науки Российской Федерации

ГОУ ВПО «Тамбовский государственный технический университет»

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

Лабораторные работы для студентов 2 курса специальностей 140211, 110302 всех форм обучения

Тамбов ◆ Издательство ТГТУ ◆ 2008

Учебное издание

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

Лабораторные работы

Составители: ВИНОКУРОВ Евгений Борисович, ИВАНОВ Владимир Михайлович, ПЕЧАГИН Евгений Александрович

Редактор Ю.В. Шиманова Инженер по компьютерному макетированию М.А. Филатова

Подписано в печать 5.11.2008 Формат 60 × 84/16. 2,56 усл. печ. л. Тираж 100 экз. Заказ № 480.

Издательско-полиграфический центр Тамбовского государственного технического университета 392000, Тамбов, Советская, 106, к. 14

ИЗУЧЕНИЕ ЛИНЕЙНЫХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Цель работы: Экспериментальная проверка основных законов и методов расчёта линейных цепей постоянного тока: наложения, двух узлов; эквивалентного генератора.

Оборудование и приборы:

- 1. Источники постоянного тока.
- 2. Амперметр постоянного тока 0...1 А.
- 3. Вольтметр постоянного тока 0...15 В.

Пояснения к выполнению работы

Изучить разделы учебника: закон Ома для участка цепи; обобщённый закон Ома; законы Кирхгофа; метод контурных токов; принцип наложения и метод наложения; метод узловых потенциалов (двух узлов); метод эквивалентного генератора.

Порядок выполнения работы

- 1. Измерить величину ЭДС источника E_1 вольтметром и внести результат в табл. 1.
- 2. Определить сопротивления резисторов R_1 , R_2 , R_3 методом амперметра-вольтметра, для чего собрать схему (рис. 1) и, подключая поочередно резисторы, измерить токи и напряжения. Данные измерений внести в табл. 1.

Таблица 1

		Вычисления								
I_1	I_2	I_3	U_1	U_2	U_3	E_1	R_1	R_2	R_3	
	мА			В				Ом		

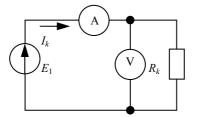


Рис. 1. Схема измерения сопротивления

3. Проверить экспериментально первый закон Кирхгофа. Собрать цепь согласно рис. 2. Измерить токи ветвей I_1 , I_2 , I_3 , внести результат измерений в первую строку табл. 2. Проверить справедливость формулы $\sum I_k = 0$.

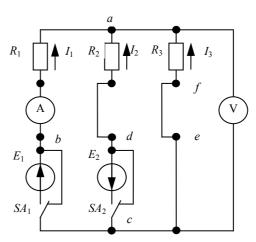


Рис. 2. Схема исследуемой цепи

- 4. Провести экспериментальную проверку (рис. 2) метода наложения, для чего:
- а) измерить токи в ветвях I_1 , I_2 , I_3 от действия двух источников E_1 и E_2 ; внести результат измерений в первую строку табл. 2;
- б) измерить токи ветвей цепи I_1 , I_2 , I_3 от действия одного источника ЭДС E_1 ; внести результат измерений во вторую строку табл. 2;
- в) измерить токи во всех ветвях цепи I_1 , I_2 I_3 от действия другого источника ЭДС E_2 ; внести результат измерений в третью строку табл. 2;

- Γ) рассчитать токи во всех ветвях исследуемой цепи $I_1,\,I_2,\,I_3\,$ методом наложения; внести результат расчётов в табл.
- д) сравнить измеренные и рассчитанные значения токов ветвей; объяснить расхождения результатов.

№		Измерения			Вычисления			
опыта		I_1	I_2	I_3	I_1	I_2	I_3	
Опыта				N	иΑ			
1	E_1, E_2							
2	E_1							
3	E_2							

- 5. Провести экспериментальную проверку метода эквивалентного генератора относительно ветви R_3 исследуемой цепи (см. рис. 2), для чего:
 - а) замкнуть амперметром клеммы a и e и измерить ток I_{3K3} в короткозамкнутой ветви;
 - б) отключить перемычку f-e и измерить напряжение холостого хода U_{xx} на клеммах a-c;
 - в) рассчитать ток I_3 методом эквивалентного генератора:

$$R_9 = \frac{U_{xx}}{I_{2 \text{ K3}}}; \quad I_3 = \frac{U_{xx}}{(R_2 + R_9)}.$$

Данные измерений и расчета внести в табл. 3.

2;

Таблица 3

Ţ	Измерения		Вычисления			
<i>I</i> _{3K3} , A	$U_{\rm xx}$, B	<i>I</i> ₃ , A	$U_{\rm xx},{ m B}$	<i>R</i> _э , Ом	<i>I</i> ₃ , A	

- 6. Снять потенциальную диаграмму внешнего контура исследуемой цепи (см. рис. 2), для чего:
- а) одну клемму вольтметра соединить с узлом c;
- б) измерить потенциалы точек b, a, e, d, последовательно присоединяя к ним вторую клемму вольтметра;
- в) рассчитать потенциалы точек b, a, e, d, используя результаты опытов п. 3. Данные измерения и расчёта внести в табл. 4. Построить потенциальную диаграмму внешнего контура.

Таблица 4

	Измерения, В					Вычисления, В				
φ_b	φ _a	φ_e	φ_c	φ_d	ϕ_b ϕ_a ϕ_e ϕ_c				φ_d	

7. Выполнить эксперименты в программе **EWB**. Открыть файл lab1_01.ewb. Схема цепи соответствует рис. 3. Установить значения элементов цепи лабораторного стенда. Установить переключатели $S_1...S_4$ с помощью клавиш «1», «2», «3», «4» в следующие положения:

$$S_1...S_3$$
 – «ВКЛ»; S_4 – «ВЫКЛ».

Включить питание. Провести измерения токов $I_1...I_3$. Заполнить первую строку табл. 5. Выключить питание.

8. Проверить выполнение первого закона Кирхгофа для верхнего узла цепи.

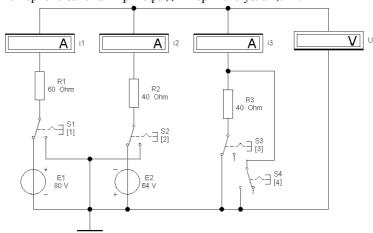


Рис. 3. Моделирование исследуемой цепи в программе EWB

№		Измерения, мА		Вычисления, мА				
опыта	I_1	I_2	I_3	I_1	I_2	I_3		
1								
2								
3								

- 9. Переключатель S2 перевести в положение «ВЫКЛ». Включить питание. Измерить и внести во вторую строку табл. 5 значения токов I_1 , I_2 , I_3 при действии одного источника ЭДС E_1 . Выключить питание.
- 10. Переключатель S2 перевести в положение «ВКЛ», переключатель S1 перевести в положение «ВЫКЛ». Включить питание. Измерить и внести в третью строку табл. 5 значения токов I_1 , I_2 , I_3 при действии другого источника ЭДС E_2 . Выключить питание.
 - 11. Рассчитать токи во всех ветвях исследуемой цепи методом наложения. Внести результат расчётов в табл. 5.
- 12. Провести экспериментальную проверку метода двух узлов. Установить переключатели в положение, соответствующие п. 7. По имеющимся значениям ЭДС и сопротивлений провести расчёт узлового напряжения U_{ab} , а также токи ветвей I_1 , I_2 , I_3 . Результаты занести в табл. 6. Включить питание. Показания вольтметра U и амперметров занести в табл. 6. Выключить питание. Проверить совпадение расчётов и результатов измерений.

Изі	Вычисления						
U_{ab}	I_1	I_2	I_3	U_{ab}	I_1	I_2	I_3
В	A			В	A		

13. Провести экспериментальную проверку метода эквивалентного генератора. Установить переключатели $S_1...S_4$ с помощью клавиш «1», «2», «3», «4» в следующие положения:

$$S_1, S_2 - \text{«ВКЛ»}; S_3, S_4 - \text{«ВЫКЛ»}.$$

Включить питание. Измерить и записать в табл. 7 напряжение холостого хода эквивалентного генератора U_{xx} . Выключить питание. Переключатель S_4 перевести в положение «ВКЛ», включить питание и измерить значение тока короткого замыкания I_{3K3} . Повторить расчёты п. 5, получив параметры эквивалентного генератора и расчётное значение тока I_3 .

Таблица 7

17	D	I_3			
O eq	κ_{eq}	Измерения	Вычисления		

14. Собрать в рабочем окне программы EWB схему эквивалентного генератора согласно рис. 4. Установить значения $U_{eq} = U_{xx}$ и $R_{eq} = R_3$.

Включить питание. Измерить и записать в табл. 7 величину тока ветви I_3 . Выключить питание. Сравнить результат измерений с расчётным значением.

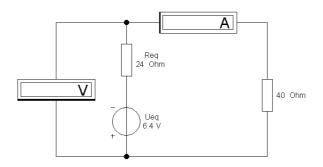


Рис. 4. Моделирование эквивалентного генератора в программе EWB Содержание отчёта

- 1. Схемы исследуемых электрических цепей.
- 2. Заполненные таблицы с результатами измерений.
- 3. Результаты расчётов.
- 4. Выводы.

Контрольные вопросы

- 1. Дайте определение электрической цепи.
- 2. Дайте определения основных топологических элементов электрической цепи.
- 3. Сформулируйте основные законы линейных электрических цепей постоянного тока.
- 4. На каких законах основан классический метод расчёта электрических цепей?
- 5. В чём заключается сущность метода наложения (суперпозиции)?
- 6. В каких случаях наиболее рационален метод двух узлов?
- 7. В каких случаях обосновано использование метода эквивалентного генератора?
- 8. В чём заключается сущность метода контурных токов?
- 9. Какие из методов не могут быть проверены экспериментально?
- 10. Как строиться потенциальная диаграмма контура?
- 11. В чём заключается различие между источниками тока и источниками ЭДС?

Литература: [1], с. 33 – 44, 55 – 60, 64 – 65; [2], с. 9 – 14, 103 – 116.

Лабораторная работа 2

ИССЛЕДОВАНИЕ НЕРАЗВЕТВЛЁННЫХ ЛИНЕЙНЫХ ЦЕПЕЙ ПЕРЕМЕННОГО СИНУСОИДАЛЬНОГО ТОКА

Цель работы: Исследование физических процессов, происходящих при включении простых цепей, содержащих активное сопротивление R, ёмкость C и индуктивность L на переменное синусоидальное напряжение. Построение векторных диаграмм и треугольников сопротивлений.

Оборудование и приборы:

- 1. Источник постоянного тока.
- 2. Генератор НЧ Г3-103.
- 3. Миллиамперметр постоянного тока 0...200 мА.
- 4. Вольтметр постоянного тока 0...15 В.
- 5. Миллиамперметр переменного тока 0...200 мА.
- 6. Вольтметр переменного тока 0...15 В.
- 7. Осциллограф.

Пояснения к выполнению работы

Изучить разделы учебника: векторные диаграммы; резистивный, индуктивный и ёмкостный элементы в цепи переменного синусоидального тока; треугольник сопротивлений и треугольник проводимостей.

Порядок выполнения работы

1. Измерить сопротивление катушки индуктивности постоянному току r. Для этого собрать схему согласно рис. 1. Резистор R_1 ограничивает ток в катушке до безопасного значения. Ориентировочное значение ЭДС источника E=10 В, сопротивления $R_1=100$ Ом, вольтметр должен иметь высокое входное сопротивление, тогда его можно не учитывать. Измерить значения I_1 , U_1 , рассчитать по закону Ома сопротивление катушки $r=U_1/I_1$, результаты внести в табл. 1.

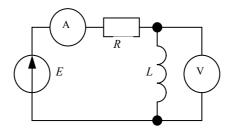


Рис. 1. Схема цепи для измерения активного сопротивления катушки

Таблица 1

	Измерения					Вычисления						
f	U_1	U_2	U_3	I_1	I_2	I_3	r	Z	X_L	X_C	L	C
Гц		В		A		Ом				Гн	мкФ	

2. Определить полное и индуктивное сопротивления катушки, а также её индуктивность L. Для этого собрать схему согласно рис. 2. В качестве источника переменной ЭДС использовать генератор НЧ, установив частоту f=1 к Γ ц и выходное напряжение 10 В. Измерить значения I_2 , U_2 , рассчитать полное сопротивление катушки $z=U_2/I_2$, а также индуктивное сопротивление X_L и индуктивность катушки L, используя формулы:

$$z = \sqrt{r^2 + X_L^2}; \quad X_L = \sqrt{z^2 - r^2}; \quad L = \frac{X_L}{2\pi f}.$$

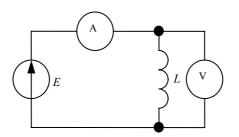


Рис. 2. Схема цепи для измерения полного сопротивления катушки

Результаты внести в табл. 1.

3. Построить векторную диаграмму тока I и напряжений U_2 , U_r , U_L для катушки индуктивности (рис. 3), для этого вычислить угол сдвига фаз между напряжением и током $\varphi_{\kappa} = \arccos \frac{r}{\tau}$, а также

$$\cos \varphi_{\kappa} = \frac{r}{z}; \sin \varphi_{\kappa} = \sqrt{1 - \cos^2 \varphi_{\kappa}}; U_r = U_2 \cos \varphi_{\kappa}; U_L = U_2 \sin \varphi_{\kappa}.$$

Рис. 3. Векторная диаграмма напряжений катушки индуктивности

- 4. Измерить ёмкость конденсатора. Для этого в схеме рис. 2 вместо катушки L включить конденсатор C. Измерить значения I_3 , U_3 , вычислить $X_C = U_3/I_3$, $C = 1/2\pi f X_C$, результаты внести в табл. 1.
- 5. Измерить угол сдвига фаз между напряжением и током в конденсаторе. Для этого собрать схему рис. 4. В качестве датчика тока $R_{\rm T}$ использовать низкоомный резистор с известным сопротивлением, например, $R_{\rm T}=1$ Ом; $z_{\rm x}$ исследуемый реактивный элемент (конденсатор). Параметры источника переменной ЭДС прежние.

K точке I цепи подключить вход канала A двухлучевого осциллографа, к точке 4 цепи — вход канала B, к точке 2 — корпус осциллографа. В качестве z_x включить исследуемый конденсатор, точки I и 3 замкнуть накоротко. С помощью органов управления осциллографом получить устойчивые осциллограммы напряжения на цепи

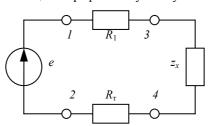


Рис. 4. Схема цепи для измерения ф

(канал A) и тока (канал B). Синхронизация — по каналу A.

По осциллограммам определить период переменной ЭДС T, а также временной сдвиг между напряжением и током Δt с учётом знака. Вычислить угол сдвига фаз между напряжением и током по формуле:

$$\varphi = \frac{\Delta t}{T} \cdot 360^{\circ}$$
 или $\varphi = \frac{\Delta t}{T} 2\pi$ рад.

Результаты внести в строку 1 табл. 2.

Таблица 2

№ п/п	T	Δt	φ	U_{13}	U_{34}
	МС	мс	град/рад	В	В
1					
2					
3					
4					

6. Измерить угол сдвига фаз между напряжением и током в неразветвлённой RC-цепи. Для этого разомкнуть точки I и 3 исследуемой цепи и повторить измерения π . 5. Измерить вольтметром напряжения U_{13} между точками I и I (на резисторе I) и I и I и I между точками I и I (на конденсаторе I).

Результаты внести в строку 2 табл. 2.

- 7. Измерить угол сдвига фаз между напряжением и током в катушке индуктивности ϕ_{κ} (см. рис. 4, z_x катушка индуктивности). Повторить действия п. 5, результаты измерений внести в 3 строку табл. 2. Сравнить результат измерений с результатом расчёта в п. 3, объяснить полученные расхождения.
- 8. Измерить угол сдвига фаз между напряжением и током в неразветвлённой *RL*-цепи. Для этого повторить действия п. 6, результаты измерений внести в 4 строку табл. 2.
- 9. Построить векторные диаграммы напряжений и треугольники сопротивлений для цепей с элементами L, C, LC, RC.
- 10. Выполнить эксперименты в программе EWB. Открыть файл lab2_01.ewb. Схема цепи соответствует рис. 5. Установить значения элементов цепи лабораторного стенда. Установить переключатели «R», «C», «L» в следующие положения:

$$\langle\langle R \rangle\rangle$$
 – $\langle\langle BKJI \rangle\rangle$; $\langle\langle C \rangle\rangle$, $\langle\langle L \rangle\rangle$ – $\langle\langle BBIKJI \rangle\rangle$.

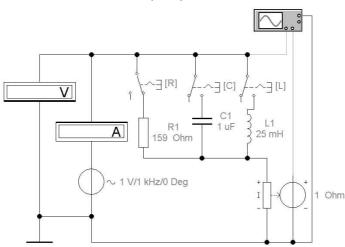


Рис. 5. Моделирование цепи с одним элементом в программе EWB

Включить питание. На экране осциллографа получить две осциллограммы, соответствующие напряжению на резисторе R_1 (канал A) и сигналу датчика тока в масштабе 1 A в 1 B (канал B). Выключить питание.

По показаниям осциллографа определить период сигнала генератора T, разность фаз между напряжением и током ϕ . Установить визир 1 в точку канала A, удобную для считывания показаний, например, в точку $U_A = 0$ В. Установить визир 2 в точку канала B, соответствующую по фазе точке A. На панели осциллографа в крайнем правом окне снять значение величины T_2 — T_1 (разность фаз между напряжением и током, выраженная в миллисекундах или микросекундах) с

учётом знака. Показания внести в табл. 3.

Таблица 3

5	Элемент	Т, мкс	U, B	I, mA	T_2 - T_1 , мкс	ф, рад
R						
\overline{C}						
L						

- 11. Повторить действия п. 10 при следующих положениях переключателей: «С» «ВКЛ.»; «R», «L» «ВЫКЛ.».
- 12. Повторить действия п. 10 при следующих положениях переключателей: «L» «ВКЛ.»; «R», «C» «ВЫКЛ.». Построить векторные диаграммы напряжений и токов для элементов R, C, L.
- 13. Исследовать неразветвлённую цепь, содержащую элементы *RR*, *RC*, *RL*. Открыть файл lab2_02.ewb. Схема цепи соответствует рис. 6. Установить новые значения элементов цепи, соответствующие значениям элементов цепи лабораторного стенда.

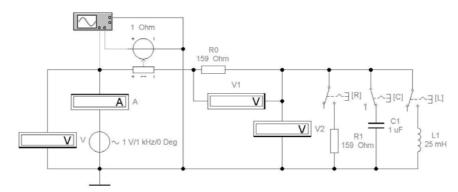


Рис. 6. Моделирование неразветвленной цепи в программе EWB

Установить переключатели (R), (C), (L) в следующие положения:

$$\langle\langle R \rangle\rangle$$
 – $\langle\langle BKJI. \rangle\rangle$; $\langle\langle C \rangle\rangle$, $\langle\langle L \rangle\rangle$ – $\langle\langle BBIKJI. \rangle\rangle$.

Включить питание. Снять показания всех измерительных приборов, внести их в соответствующие ячейки табл. 4. Выключить питание.

Таблица 4

	ПОЛОЖЕНИЕ ПЕРЕКЛЮЧАТЕЛЕЙ «R», «С», «L»										
«R» – «ВКЛ.» «С» – «ВКЛ.» «L» – «ВКЛ.» «С», «L» – «ВЫКЛ.» «R», «С» – «ВЫКЛ.» «R», «С» – «ВЫКЛ.»											
U, B		U, B		U, B							
U_1 , B		U_1 , B		U_1 , B							
U_2 , B		U_2 , B		U_2 , B							
<i>I</i> , A		I, A		I, A							

- 14. Повторить действия п. 13 при следующих положениях переключателей: «С» «ВКЛ.»; «R», «L» «ВЫКЛ.».
- 15. Повторить действия п. 13 при следующих положениях переключателей: «L» «ВКЛ.»; «R», «С» «ВЫКЛ.».

Убедиться расчётным путём в том, что для цепи п. 13 выполняется равенство: $U = U_1 + U_2$, а для цепей пп. 14 и 15 выполняется равенство: $U^2 = U_1^2 + U_2^2$. Объяснить отличия в значениях напряжений на элементах и токов цепей.

16. Провести измерения угла сдвига фаз между напряжением и током в элементах цепи рис. 6 с использованием двухлучевого осциллографа. Установить переключатели «R», «C», «L» согласно п. 13. На экране осциллографа получить две осциллограммы, соответствующие напряжению на резисторе R_1 (канал A) и сигналу датчика тока в масштабе 1 A в 1 B (канал B).

Показания внести в табл. 5.

- 17. Установить переключатели «R», «C», «L» согласно п. 14. Провести измерения величины T_2 – T_1 . Показания внести в табл. 5.
- 18. Установить переключатели «R», «C», «L» согласно п. 15. Провести измерения величины T_2 – T_1 . Показания внести в табл. 5.

Таблица 5

<i>f</i> , кГц	Т, мкс	T_2 - T_1 п. 16		$T_2 - T_1$	п. 17	$T_2 - T_1 \pi. 18$		
		МКС	рад	МКС	рад	мкс	рад	

Вычислить разность фаз между напряжением и током в радианах и заполнить соответствующие ячейки табл. 5.

19. Построить векторные диаграммы напряжений и треугольники сопротивлений для RR-, RC-, и RL-цепей, исследованных в пп. 13 - 18.

Содержание отчёта

- 1. Схемы исследуемых электрических цепей.
- 2. Заполненные таблицы с результатами измерений.
- 3. Результаты расчётов.
- 4. Векторные диаграммы напряжений и треугольники сопротивлений.
- 5. Выводы.

Контрольные вопросы

- 1. Какую величину называют индуктивным сопротивлением и в каких единицах его измеряют?
- 2. Какие существуют методы измерения индуктивного сопротивления?
- 3. Какую величину называют ёмкостным сопротивлением и в каких единицах его измеряют?
- 4. Какие существуют методы измерения ёмкостного сопротивления?
- 5. Как записываются законы Ома и Кирхгофа для цепей переменного синусоидального тока?
- 6. Для чего применяют векторные диаграммы?
- 7. Что такое треугольники напряжений, сопротивлений, мощностей?

Литература: [1], c. 33-44, 55-60, 64-65; [2], c. 9-14, 103-116.

Лабораторная работа 3

ИССЛЕДОВАНИЕ РЕЗОНАНСА НАПРЯЖЕНИЙ

Цель работы: Изучение и экспериментальное исследование резонанса в цепи с последовательным соединением катушки индуктивности и конденсатора.

Оборудование и приборы:

- 1. Генератор НЧ Г3-103.
- 2. Вольтметр переменного тока 0...15 В.
- 3. Миллиамперметр переменного тока 0...200 мА.

Пояснения к выполнению работы

Изучить разделы учебника: резонансный режим работы двухполюсника; резонанс напряжений в неразветвлённой *RLC*-цепи; частотные характеристики двухполюсников.

Порядок выполнения работы

- 1. Собрать схему, приведённую на рис. 1. В качестве источника переменной ЭДС e(t) использовать звуковой генератор, работающий в режиме источника напряжения (r- его внутреннее сопротивление), L- катушка индуктивности, R- её омическое сопротивление, C- конденсатор.
- 2. Снять зависимости $I(\omega)$, $U_L(\omega)$, $U_C(\omega)$, при U = const. При измерении напряжений необходимо применять вольтметр с высоким входным сопротивлением. Рекомендуется сначала определить резонансную частоту по максимуму тока, а затем сделать по 5 измерений на частотах ниже и выше резонансной. Данные внести в табл. 1.

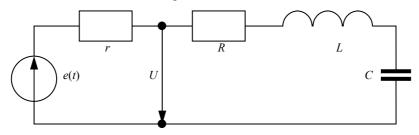


Рис. 1. Схема исследуемой цепи

Таблица 1

a			Изме	рения					В	ычисл	пения			
опыта	П	၁	U_R	U_L	U_C		Z	X_L	X_C	R	Н	мкФ	ф	Br
Š	f, Γ	Θ,		В		I, A		О	M		L, Γ	C, ME	cosp	<i>P</i> , B
)		
1														
2														
•••														
11														

- 3. Определить расчётным путём и внести в таблицу следующие величины: Z, X_L, X_C, L, C, R , соѕф и P, используя формулы: $Z = \frac{U}{I}$; $R = \frac{U}{I_0}$; $X_L = \sqrt{Z^2 R^2}$; $X_C = \frac{U_C}{I}$; $L = \frac{X_L}{\omega}$; $C = \frac{1}{\omega X_C}$; соѕф = $\frac{R}{Z}$, где I_0 ток в цепи при резонансе.
 - 4. Определить добротность $Q = \frac{\omega_0 L}{R}$ и волновое сопротивление $\rho = \sqrt{\frac{L}{C}}$ контура.
 - 5. Построить в масштабе векторные диаграммы напряжений для трёх частот: $f = f_0$; $f = 0.8f_0$; $f = 2f_0$.
 - 6. Построить в масштабе в одной системе координат графики: $U_C(\omega)$, $U_L(\omega)$, $I(\omega)$, $I(\omega)$
 - 7. Запустить программу **EWB**.
- 8. Загрузить файл resonance_serial.ewb. Схема цепи соответствует рис. 2. Установить значения элементов цепи лабораторного стенда.
- 9. Установить переключатель S_0 с помощью клавиши «I» в верхнее по схеме положение. Переключатели S_1 и S_2 с помощью клавиш «C» и «L» установить в нижнее по схеме положение.
 - 10. Включить питание. Через промежуток времени $t \ge 5$ с отключить питание.
- 11. Включить Боде-плоттер (измеритель AЧX) в режим измерения AЧX (**Magnitude**), установить нижнюю и верхнюю частоты анализа (Horizontal F и Horizontal I соответственно), и с помощью кнопок « \leftarrow » и « \rightarrow » на его панели определить частоту f_0 , соответствующую резонансу напряжений и, соответственно, максимуму тока в цепи.
- 12. Включить Боде-плоттер в режим измерения ФЧХ (**Phase**), определить угол сдвига фаз между *током* и *напряжением* α на частоте f_0 , соответствующей максимуму тока в цепи. Угол сдвига фаз между *напряжением* и *током* α имеет такую же величину, взятую с обратным знаком. Рассчитать модуль полного сопротивления цепи Z (рис. 2).
- 13. Внести в первую строку табл. 1 значения резонансной частоты f_0 (соответствующей максимуму тока), а также величины напряжений на всей цепи U, на сопротивлении U_R , катушке индуктивности U_L , конденсаторе U_C модуль полного сопротивления цепи Z.
- 14. Установить переключатели S_0 и S_2 в нижнее по схеме положение. Переключатель S_1 установить в верхнее по схеме положение.

- 15. Повторить п. 10.
- 16. Включить Боде-плоттер в режим измерения АЧХ (**Magnitude**), с помощью кнопок « \leftarrow » и « \rightarrow » на его панели определить частоту f_C , соответствующую максимуму напряжения на конденсаторе.

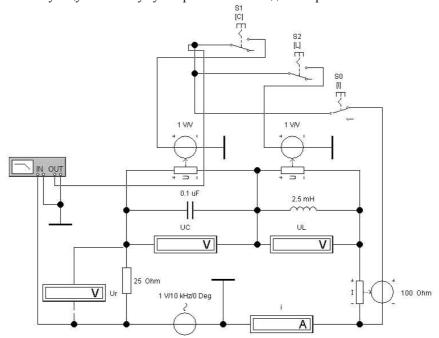


Рис. 2. Моделирование резонанса напряжений в программе EWB

- 17. Установить переключатели S_0 и S_1 в нижнее по схеме положение. Переключатель S_2 установить в верхнее по схеме положение.
 - 18. Повторить п. 10.
- 19. Включить Боде-плоттер в режим измерения АЧХ (**Magnitude**), с помощью кнопок « \leftarrow » и « \rightarrow » на его панели определить частоту f_L , соответствующую максимуму напряжения на катушке индуктивности.
- 20. Установить на генераторе частоту $f_{\rm H}$ = 0,8 f_0 , повторить пп. 10, 12. Рассчитать модуль полного сопротивления цепи Z. Внести во вторую строку табл. 2 величины напряжений на всей цепи U, сопротивлении U_R , катушке индуктивности U_L , конденсаторе U_C , модуль полного сопротивления цепи Z.
- 21. Установить на генераторе частоту $f_{\rm B}$ = 1,2 f_0 , повторить пп. 10, 12. Рассчитать модуль полного сопротивления цепи Z. Внести в третью строку табл. 2 величины напряжений на всей цепи U, сопротивлении U_R , катушке индуктивности U_L , конденсаторе U_C , модуль полного сопротивления цепи Z.
 - 22. Построить векторные диаграммы напряжений, соответствующие пп. 13, 20, 21.

№	<i>R</i> , Ом	<i>L</i> , Гн	<i>С</i> , мкФ	U	U_R	U_L	U_C	I, A	f_0	<i>f_L</i> Гц	f_C	φ, град	<i>Z</i> , Ом
1													
2													
3													

Содержание отчёта

- 1. Заполненные таблицы результатов измерений и расчётов.
- 2. Векторные диаграммы напряжений для следующих режимов работы цепи: $f = f_0$; $f_H = 0.8f_0$; $f_B = 1.2f_0$.

Контрольные вопросы

- 1. Чем характеризуется резонансный режим работы электрической цепи?
- 2. Какой режим работы электрической цепи называют резонансом напряжений?
- 3. Изменением каких параметров цепи или источника питания можно добиться резонанса напряжений?
- 4. Записать условие резонанса напряжений.
- 5. Как по величине входного тока установить, что достигнут резонанс напряжений?
- 6. При каком соотношении параметров цепи напряжения на реактивных элементах могут быть значительно больше входного?
 - 7. Как определить добротность контура?
- 8. Как меняется знак угла сдвига фаз между напряжением и током ф при изменении частоты от нуля до бесконечности?
 - 9. Объяснить ход зависимостей $I(\omega)$, $U_L(\omega)$, $U_C(\omega)$, $Z(\omega)$, $\varphi(\omega)$, $\cos\varphi(\omega)$. Литература: [1], с. 108-116; [2], с. 93-101.

ИССЛЕДОВАНИЕ РЕЗОНАНСА ТОКОВ

Цель работы: Изучение и экспериментальное исследование резонанса в цепи при параллельном соединением катушки индуктивности и конденсатора.

Оборудование и приборы:

- 1. Генератор НЧ Г3-103.
- 2. Вольтметр переменного тока 0...15 В.
- 3. Миллиамперметр переменного тока 0...200 мА.

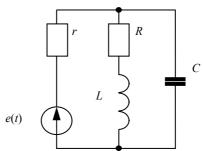
Пояснения к выполнению работы

Изучить разделы учебника: резонансный режим работы двухполюсника; резонанс токов в разветвлённой RLC-цепи; компенсация сдвига фаз.

Порядок выполнения работы

- 1. Собрать цепь согласно схеме, приведённой на рис. 1. В качестве источника переменной ЭДС e(t) использовать звуковой генератор, работающий в режиме источника напряжения (r его внутреннее сопротивление), L катушка индуктивности, R её омическое сопротивление, C конденсатор.
- 2. Снять зависимости общего тока и токов через катушку индуктивности и конденсатор от частоты, питая цепь от звукового генератора, работающего в режиме источника ЭДС. Для этого необходимо установить r = 5 Ом. При необходимости постоянство выходного напряжения целесообразно поддерживать с помощью регулятора уровня выхода.

При измерении напряжений необходимо применять вольтметр с высоким входным сопротивлением. Рекомендуется сначала определить резонансную частоту по максимуму тока, а затем сделать по пять измерений на частотах ниже резонансной и выше резонансной. Данные внести в табл. 1.



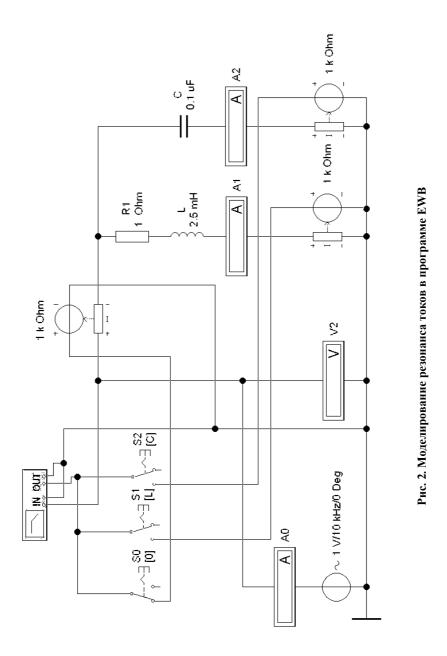

Рис. 1. Схема исследуемой цепи

Таблица 1

№			Измер	рения				B	ычисле	ния	
опыта	f,	ω,	U,	Ι	I_L	I_C	Y	g	b_L	b_C	cosφ
	Гц	c	В		A			C	M		σουφ
1											
2											
11											

- 3. Провести расчёт величин:
- а) полной проводимости $Y = \frac{I}{U}$;
- б) активной проводимости $g = \frac{I_0}{U}$;
- в) индуктивной проводимости $b_L = \sqrt{Y_L^2 g^2} = \sqrt{\left(\frac{I_L}{U}\right)^2 \left(\frac{I_0}{U}\right)^2}$;
- г) ёмкостной проводимости $b_C = \omega C$;
- д) коэффициента мощности $\cos \phi = \frac{g}{V}$. Данные вычислений внести в табл. 1.
- 4. По данным эксперимента и вычислений построить в масштабе в одной системе координат графики: $I(\omega)$, $I_L(\omega)$, $I_C(\omega)$. В другой системе координат в том же масштабе по частоте и строго под первой зависимости: $Y(\omega)$, $\cos \varphi(\omega)$.
 - 5. Построить в масштабе векторные диаграммы для трёх случаев:
 - а) для частоты резонанса f_0 ;
 - б) для частоты $f = 0.8f_0$;
 - в) для частоты $f = 1,2f_0$.

- 6. Запустить программу **EWB**.
- 7. Загрузить файл resonance_parall.ewb. Схема цепи соответствует рис. 2. Установить значения элементов цепи лабораторного стенда.
- 8. Установить переключатель S_0 с помощью клавиши «0» в левое по схеме положение. Переключатели S_1 и S_2 с помощью клавиш «L» и «C» установить в правое по схеме положение.
 - 9. Включить питание. Через промежуток времени $t \ge 5$ с отключить питание.
- 10. Включить Боде-плоттер (измеритель AЧX) в режим измерения AЧX (**Magnitude**), установить нижнюю и верхнюю частоты анализа (Horizontal F и Horizontal I соответственно) и сравнить полученную характеристику с теоретической, с помощью кнопок « \leftarrow » и « \rightarrow » на его панели определить частоту f_0 , соответствующую резонансу токов и, соответственно, минимуму тока в цепи.

- 11. Включить Боде-плоттер в режим измерения ФЧХ (**Phase**), определить угол сдвига фаз между *током* и *напряжением* α на частоте f_0 , соответствующей резонансу токов. Угол сдвига фаз между *напряжением* и *током* α имеет такую же величину, взятую с обратным знаком. Провести также измерения на частотах $f_{\rm H} = 0.8f_0$; $f_{\rm B} = 1.2f_0$.
- 12. Установить переключатель S_0 с помощью клавиши «0» в правое по схеме положение. Переключатель S_1 с помощью клавиши «L» установить в левое по схеме положение. Повторить п. 9. Включить Боде-плоттер в режим измерения АЧХ (**Magnitude**), получить зависимость $I_L(f)$. Сравнить её с теоретической.
- 13. Установить переключатель S_1 с помощью клавиши «L» в правое по схеме положение, переключатель S_2 с помощью клавиши «C» установить в левое по схеме положение. Повторить п. 9. Включить Боде-плоттер в режим измерения АЧХ (Magnitude), получить зависимость $I_C(f)$. Сравнить её с теоретической.
- 14. Снять показания амперметров A_0 , A_1 , A_2 , измеряющих токи цепи I_0 , I_L , I_C на частоте f_0 , установленной на источнике переменной ЭДС заранее. Внести их в табл. 2.

- 15. Установить частоту $f_H = 0.8 f_0$, повторить п. 9. Снять показания приборов на частоте f_H , внести их в табл. 2.
- 16. Установить частоту $f_B = 1, 2f_0$, повторить п. 9. Снять показания приборов на частоте f_B , внести их в табл. 2.
- 17. Провести расчёты величин $Y, g, b_L, b_C, \cos \varphi$, внести их в соответствующие ячейки табл. 2.
- 18. Построить в масштабе векторные диаграммы токов для опытов, проведённых на частотах $f = f_0$; $f_{\rm H} = 0.8f_0$; $f_{\rm B} = 1.2f_0$.

		U змерения U , I I_L I_C f , ϕ , B A						Вы	ычисле	ния	
	_		U,	I	I_L	I_C	Y	g	b_L	b_C	
	f,	φ,	В		A			Cı	M		cosφ
1	ΙЦ	град									
2											
3											

Содержание отчёта

- 1. Заполненная таблица результатов измерений и расчётов.
- 2. Векторные диаграммы токов для следующих режимов работы цепи: $f = f_0$; $f_{\rm H} = 0.8 f_0$; $f_{\rm B} = 1.2 f_0$.

Контрольные вопросы

- 1. Напишите формулы для определения активной, индуктивной, ёмкостной и полной проводимостей электрической цепи.
 - 2. Зависит ли реактивная проводимость катушки индуктивности от величины её активного сопротивления?
 - 3. Сформулируйте условие возникновения резонанса токов в электрической цепи.
 - 4. Чем отличается резонанс токов от резонанса напряжений?
- 5. Поясните способ повышения коэффициента мощности электрической цепи при параллельном включении ёмкости и потребителя с активно-индуктивной нагрузкой.
 - 6. Поясните ход зависимостей $I(\omega)$, $I_L(\omega)$, $I_C(\omega)$.

Литература: [1], с. 108 – 110; [2], с. 93 – 101.

Лабораторная работа 5

ИССЛЕДОВАНИЕ ТРЁХФАЗНЫХ ЦЕПЕЙ ПРИ СОЕДИНЕНИИ ПРИЁМНИКОВ ЗВЕЗДОЙ

Цель работы: Установить соотношения между линейными и фазными токами и напряжениями в трёхфазной системе при соединении приёмников звездой при различной нагрузке фаз; определить влияние обрыва линейного провода и одной или двух фаз приёмника на его работу; построить векторные диаграммы напряжений и токов.

Оборудование и приборы:

- 1. Трёхфазный источник с напряжением 36 В.
- 2. Вольтметр переменного тока 0...50 В.
- 3. Амперметр переменного тока 0...0,5 А.
- 4. Измерительный комплект К-505.

Пояснения к выполнению работы

Изучить разделы учебника: трёхфазная система ЭДС; основные схемы соединения трёхфазных цепей; соотношения между линейными и фазовыми напряжениями и токами при соединении нагрузки звездой.

Порядок выполнения работы

- 1. Ознакомиться с измерительным комплектом K-505. Для измерений в трёхпроводных цепях трёхфазного тока схема комплекта имеет искусственный нуль. Поэтому с помощью вольтметра комплекта можно измерить только фазные напряжения. Переносным вольтметром измерить линейные напряжения U_{AB} , U_{BC} , U_{CA} . Со стенда снять и записать значения r_A , r_B , r_C , L, C.
- 2. Собрать схему, приведённую на рис. 1 для измерения токов, напряжений, мощности с помощью комплекта К-505, а также тока в нулевом проводе с помощью переносного амперметра А и напряжения смещения нейтрали нагрузки с помощью переносного вольтметра V. Показания приборов записать в первую строку табл. 1.
- 3. Отключить амперметр A, создав тем самым разрыв нулевого провода, и показания приборов записать во вторую строку табл. 1. Подключить амперметр A.
 - 4. Установить несимметричную нагрузку фаз $r_A = r_B \neq r_C$, и показания приборов записать в третью строку табл. 1.
 - 5. Отключить амперметр А и показания приборов записать в четвёртую строку табл. 1.
 - 6. Провести обрыв фазы A и показания записать в пятую строку табл. 1.

- 7. Подключить амперметр A и оставить оборванной фазу A, произвести измерения. Показания приборов записать в шестую строку табл. 1.
- 8. Собрать схему для неоднородной нагрузки с нулевым проводом: фаза A активная нагрузка, фаза B индуктивная нагрузка, фаза C ёмкостная нагрузка ($Z_{AB} = r_A + jX_L$; $Z_{BC} = -jX_C$; $Z_{CA} = r$). Произвести измерения и результаты записать в седьмую строку табл. 1.

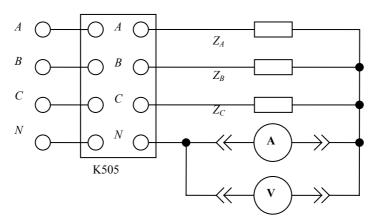


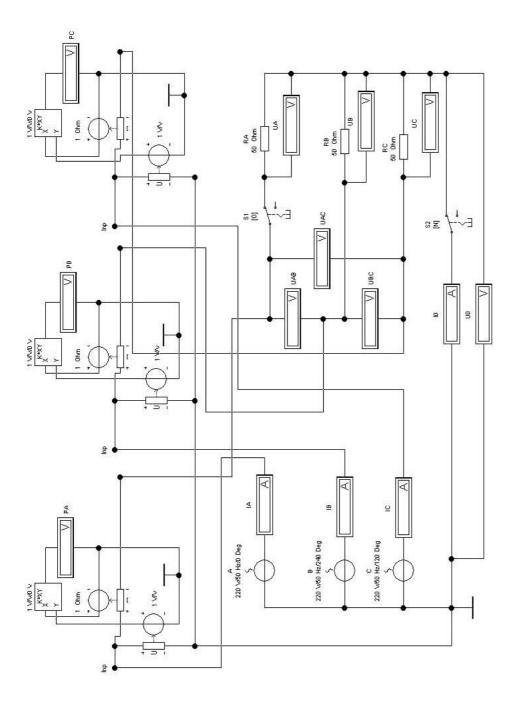
Рис. 1. Схема установки для исследования трёхфазных цепей при соединении нагрузки звездой

№ опыта	Вид нагрузки	I_A	I_B	I_C	I_N	U_A	U_{B}	U_C	U_N	P_A	P_{B}	P_C
- N			1	1 A			I	<u> </u> 			Вт	
1	$r_A = r_B = r_C,$ четырёхпроводная											
2	$r_A = r_B = r_C,$ трёхпроводная											
3	$r_A = r_B \neq r_C,$ четырёхпроводная											
4	$r_A = r_B eq r_C,$ трёхпроводная											
5	$r_A = \infty, r_B \neq r_C,$ трёхпроводная											
6	$r_A = \infty, r_B \neq r_C,$ четырёхпроводная											
7	$r_A = r, r_B = X_L, r_C = X_C,$ четырёхпроводная											
8	$r_A = r, r_B = X_L, r_C = X_C,$ трёхпроводная											

- 9. Собрать схему для неоднородной нагрузки без нулевого провода, для этого в предыдущей схеме отключить переносной амперметр А. Произвести измерения и результаты записать в восьмую строку табл. 1.
 - 10. По данным опыта 7 определить углы сдвига между током и напряжением в каждой фазе $\varphi = \arctan \frac{P}{I_{\Phi}U_{\Phi}}$.
 - 11. По данным всех опытов построить векторные диаграммы.
 - 12. Запустить программу ЕWB.
- 13. Загрузить файл star_01.ewb для исследования трёхфазной цепи при соединении приёмников звездой. Схема цепи соответствует рис. 2. Установить значения элементов цепи лабораторного стенда. Значения активной мощности в ваттах соответствуют показаниям приборов *PA*, *PB*, *PC* в вольтах.
- 14. Исследование цепи при симметричной нагрузке с нулевым проводом. Переключатели должны быть установлены в следующие положения: S_1 , S_2 «ВКЛ».
 - 15. Включить питание. Через промежуток времени $t \ge 5$ с отключить питание. Снять показания приборов.
 - 16. Заполнить первую строку табл. 2.
- 17. Исследование цепи при симметричной нагрузке без нулевого провода. Переключатели должны быть установлены в следующие положения: S_1 «ВКЛ»; S_2 «ОТКЛ».

Повторить действия п. 15, заполнить вторую строку табл. 2.

№ опыта	Вид нагрузки	I_A	I_B	I_C	I_N	U_A	U_B	U_C	U_N	P_A	P _B	P_C
			1	1			1)			DT	
1	$r_A = r_B = r_C,$ четырёхпроводная											
2	$r_A = r_B = r_C,$ трёхпроводная											
3	$r_A = r_B \neq r_C,$ четырёхпроводная											
4	$r_A = r_B eq r_C,$ трёхпроводная											
5	$r_A = \infty, r_B eq r_C,$ трёхпроводная											
6	$r_A = \infty, r_B \neq r_C,$ четырёхпроводная											
7	$r_A = r, r_B = X_L, r_C = X_C,$ четырёхпроводная											
8	$r_A = r, r_B = X_L, r_C = X_C,$ трёхпроводная											


^{18.} Исследование цепи при несимметричной нагрузке с нулевым проводом. Переключатели должны быть установлены в следующие положения: S_1 , S_2 – «ВКЛ».

Увеличить значения сопротивления *RA* в два раза. Повторить действия п. 15, заполнить третью строку табл. 2.

19. Исследование цепи при несимметричной нагрузке без нулевого провода. Переключатели должны быть установлены в следующие положения:

$$S_1$$
 – «ВКЛ»; S_2 – «ОТКЛ».

Повторить действия п. 15, заполнить четвёртую строку табл. 2.

20. Исследование цепи при обрыве линейного провода с нулевым проводом. Восстановить исходное значение RA. Переключатели должны быть установлены в следующие положения:

$$S_2$$
 – «ВКЛ»; S_1 – «ОТКЛ».

Повторить действия п. 15, заполнить пятую строку табл. 2.

21. Исследование цепи при обрыве линейного провода без нулевого провода. Переключатели должны быть установлены в следующие положения:

$$S_1$$
, S_2 – «ОТКЛ».

Повторить действия п. 15, заполнить шестую строку табл. 2.

22. Исследование цепи при неоднородной нагрузке с нулевым проводом: фаза A – активная нагрузка, фаза B – индуктивная нагрузка, фаза C – ёмкостная нагрузка. Заменить элемент RB на катушку индуктивности, а элемент RC – на

конденсатор. Установить значения элементов цепи лабораторного стенда. Переключатели должны быть установлены в следующие положения:

$$S_1$$
, S_2 – «ВКЛ».

Произвести измерения и результаты записать в седьмую строку табл. 2.

23. Исследование цепи при неоднородной нагрузке без нулевого провода: фаза A – активная нагрузка, фаза B – индуктивная нагрузка, фаза C – ёмкостная нагрузка. Переключатели должны быть установлены в следующие положения:

$$S_1$$
 – «ВКЛ»; S_2 – «ОТКЛ».

Произвести измерения и результаты записать в восьмую строку табл. 2.

- 24. По данным опыта 7 определить углы сдвига между током и напряжением в каждой фазе $\varphi = \operatorname{arctg} \frac{P}{I_{\Phi}U_{\Phi}}$
- 25. Построить векторные диаграммы для опытов 1 8 табл. 2.

Содержание отчёта

- 1. Заполненная таблица результатов измерений.
- 2. Рассчитанные значения угла сдвига фаз между напряжением и током.
- 3. Векторные диаграммы напряжений и токов.

Контрольные вопросы

- 1. Дайте определение трёхфазной симметричной системы ЭДС.
- 2. Перечислите способы соединения нагрузки в трёхфазных цепях.
- 3. Объясните назначение нейтрального провода.
- 4. Каково соотношение между фазными и линейными напряжениями и токами при соединении нагрузки звездой?
- 5. Укажите способы включения ваттметров для измерения активной мощности в четырёхпроводных и трёхпроводных трёхфазных цепях.

Литература: [1], с. 184 – 189, 191 – 195; [2], с. 123 – 131, 137 – 143.

Лабораторная работа 6

ИССЛЕДОВАНИЕ ТРЁХФАЗНЫХ ЦЕПЕЙ ПЕРЕМЕННОГО СИНУСОИДАЛЬНОГО ТОКА ПРИ СОЕДИНЕНИИ ПРИЁМНИКОВ ТРЕУГОЛЬНИКОМ

Цель работы: Установить соотношения между линейными и фазными напряжениями и токами при соединении приёмников треугольником при различной нагрузке фаз; определить влияние обрыва линейного провода и фазы нагрузки на работу цепи; построить векторные диаграммы напряжений и токов.

Оборудование и приборы:

- 1. Трёхфазный источник с напряжением 36 В.
- 2. Вольтметр переменного тока 0...50 В.
- 3. Амперметр переменного тока 0...1 А.
- 4. Измерительный комплект К-505.

Пояснения к выполнению работы

Изучить разделы учебника: трёхфазная система ЭДС; основные схемы соединения трёхфазных цепей; соотношения между линейными и фазовыми напряжениями и токами при соединении нагрузки треугольником.

Порядок выполнения работы

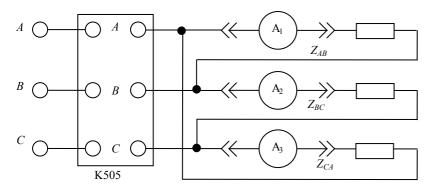


Рис. 1. Схема установки для исследования трёхфазных цепей при соединении нагрузки треугольником

1. Собрать установку для измерения токов и напряжений для случая симметричной нагрузки согласно схеме рис. 1. Установить одинаковые сопротивления в каждой фазе: $r_{AB} = r_{BC} = r_{CA}$. Для измерения линейных токов использовать прибор К-505. Фазные токи I_{AB} , I_{BC} , I_{CA} измерить тремя переносными амперметрами A_1 , A_2 , A_3 или одним, поочередно включая его в цепь каждой фазы треугольника. Фазные напряжения U_{AB} , U_{BC} , U_{CA} измерить переносным вольтметром. Со стенда снять и записать значения r_A , r_B , r_C , L, C. Показания приборов записать в первую строку табл. 1.

№	Нагрузка		I	Ізмере	ния, А			Выч	ислени	я, Вт
Π/Π	ттаг рузка	I_{AB}	I_{BC}	I_{CA}	I_A	I_B	I_C	P_{AB}	P_{BC}	P_{CA}
1	$r_{AB} = r_{BC} = r_{CA}$									
1 2 3	$r_{AB} = r_{BC} \neq r_{CA}$									
3	$r_{AB} = r_{BC}$, обрыв линейного провода A									
4	$r_{AB} = \infty,$ $r_{BC} \neq r_{CA}$									
5	$ \underline{Z}_{AB} = r_A + jX_L, \underline{Z}_{BC} = -jX_C, \underline{Z}_{CA} = r $									

- 2. Установить неодинаковые сопротивления двух фаз: $r_{AB} = r_{BC} \neq r_{CA}$. Показания приборов записать во вторую строку табл. 1.
 - 3. Произвести обрыв линейного провода A. Показания приборов записать в третью строку табл. 1.
 - 4. Подключить провод A, нагрузку r_{AB} отключить, результаты измерений записать в четвёртую строку табл. 1.
- 5. Собрать схему для неоднородной нагрузки $Z_{AB} = r_A + jX_L$; $Z_{BC} = -jX_C$; $Z_{CA} = r$. Произвести измерение токов и напряжений. Результаты измерений записать в пятую строку табл. 1.
 - 6. По данным опыта 5 определить параметры нагрузки по формулам:

$$Z_{AB} = \frac{U_{\Pi}}{I_{AB}}; X_{AB} = \sqrt{Z_{AB}^2 - r_{AB}^2}; X_{BC} = \frac{U_{\Pi}}{I_{BC}}; \cos \varphi_{AB} = \frac{r_{AB}}{Z_{AB}}; \cos \varphi_{AC} = 0; \cos \varphi_{CA} = 1.$$

7. По данным опытов 1 – 5 определить мощности фаз и всей цепи по формулам:

$$\begin{split} P_{AB} &= U_{AB} \cdot I_{AB} \cdot \cos \varphi_{AB}; \, P_{BC} = U_{BC} \cdot I_{BC} \cdot \cos \varphi_{BC}; \, P_{CA} = U_{CA} \cdot I_{CA} \cdot \cos \varphi_{CA}; \\ \sum P &= P_{AB} + P_{BC} + P_{CA}. \end{split}$$

- 8. По данным опытов 1 5 построить векторные диаграммы.
- 9. Запустить программу **EWB**.
- 10. Загрузить файл triangle_1.ewb для исследования трёхфазной цепи при соединении приёмников треугольником. Схема цепи соответствует рис. 2. Установить значения элементов цепи лабораторного стенда.
- 11. Исследование цепи при симметричной нагрузке. Переключатели должны быть установлены в следующие положения:

$$S_A$$
, S_{AB} – «ВКЛ».

- 12. Включить питание. Через промежуток времени $t \ge 5$ с отключить питание. Снять показания приборов.
- 13. Заполнить первую строку табл. 2.
- 14. Исследование цепи при несимметричной нагрузке. Увеличить значения сопротивления R_{AB} в два раза. Повторить действия п. 12, заполнить вторую строку табл. 2. Восстановить исходные значения R_{AB} .

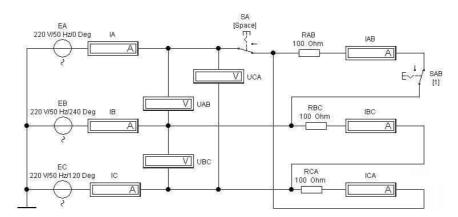


Рис. 2. Схема цепи для исследования трёхфазных цепей при соединении нагрузки треугольником (моделирование в программе EWB)

№	Нагрузка		I	Ізмере	ния, А	L		Выч	ислени	я, Вт
п/п	ттаг рузка	I_{AB}	I_{BC}	I_{CA}	I_A	I_B	I_C	P_{AB}	P_{BC}	P_{CA}
1	$r_{AB} = r_{BC} = r_{CA}$									
3	$r_{AB} = r_{BC} \neq r_{CA}$									
3	$r_{AB} = r_{BC}$, обрыв линейного провода A									
4	$r_{AB} = \infty$, $r_{BC} \neq r_{CA}$									
5	$ \underline{\underline{Z}}_{AB} = r_A + jX_L, \underline{\underline{Z}}_{BC} = -jX_C, \underline{\underline{Z}}_{CA} = r $									

15. Исследование цепи при обрыве линейного провода А.

Создать обрыв линейного провода A, установив переключатель S_A в положение «ВЫКЛ» с помощью клавиши «ПРОБЕЛ». Повторить действия п. 12, заполнить третью строку табл. 2. Восстановить исходное положение переключателя S_A с помощью клавиши «ПРОБЕЛ».

16. Исследование цепи при обрыве одной фазы нагрузки АВ.

Установить переключатель S_{AB} в положение «ВЫКЛ» с помощью клавиши I. Повторить действия п. 12, заполнить четвёртую строку табл. 2.

- 17. Исследование цепи при неоднородной нагрузке. Собрать схему для неоднородной нагрузки: $\underline{Z}_{AB} = r_A + jX_L$; $\underline{Z}_{BC} = -jX_C$; $\underline{Z}_{CA} = r$. Значения индуктивности L и ёмкости C установить согласно п. 5. Повторить действия п. 12, заполнить пятую строку табл. 1.
- 18. Вычислить параметры нагрузки и значения коэффициента мощности для каждой из фаз нагрузки по формулам п. 6.
 - 19. Вычислить значения активной мощности для каждой из фаз нагрузки и всей цепи по формулам п. 7.
 - 20. Построить векторные диаграммы для каждого из опытов.

Содержание отчёта

- 1. Заполненная таблица результатов измерений.
- 2. Рассчитанные значения коэффициента мощности и активной мощности в фазах нагрузки АВ, ВС и СА.
- 3. Векторные диаграммы напряжений и токов.

Контрольные вопросы

- 1. Начертите схему соединения приёмников в треугольник, указав положительные направления линейных и фазных токов.
 - 2. Каковы соотношения между значениями линейных и фазных токов при симметричной нагрузке?
 - 3. Начертите векторную диаграмму напряжений и токов для симметричной нагрузки, соединённой в треугольник.
- 4. Как изменятся ток и мощность, если включенные по схеме «звезда» одинаковые нагрузки переключить на схему «треугольник» (линейные напряжения в обоих случаях одинаковы)?
 - 5. Как рассчитать мощность приёмника при несимметричной нагрузке?
 - 6. Как рассчитать мощность приёмника при симметричной нагрузке?
 - 7. Доказать, что при помощи двух однофазных ваттметров можно измерить мощность всей трёхфазной цепи.

Литература: [1], с. 184 – 195; [2], с. 123 – 127, 132 – 135, 137 – 143.

Лабораторная работа 7

ИЗУЧЕНИЕ НЕЛИНЕЙНЫХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Цель работы: Изучение методики снятия вольтамперных характеристик элементов электрических цепей постоянного тока с различными видами нелинейности; экспериментальная проверка графо-аналитического метода расчёта нелинейных цепей постоянного тока.

Оборудование и приборы:

- 4. Варистор 22 В.
- 5. Лампа накаливания 220 В, 100 Вт.
- 6. Стабилитрон типа Д815 А.
- 7. Источник постоянной ЭДС 0...10 В.
- 8. Источник переменной ЭДС 0...15 В.

- 9. Амперметр постоянного тока 0,2 А.
- 10. Вольтметр постоянного тока 10 В.
- 11. Реостат 50 Ом.
- 12. Осциллограф.

Пояснения к выполнению работы

Изучить раздел учебника «Нелинейные электрические цепи постоянного тока».

Порядок выполнения работы

1. Сборка основной цепи согласно рис. 1 производится на лабораторном стенде. В качестве нелинейного элемента используется варистор. У некоторых типов нелинейных элементов ветви ВАХ могут быть настолько крутыми, что задавать разумные значения приращения напряжения и измерять соответствующие им приращения тока оказывается невозможным. Поэтому для всех трёх типов нелинейных элементов следует задавать значения тока от 0 до 150 мА через 10 мА и измерять соответствующие значения напряжения. Результаты измерений занести в табл. 1.

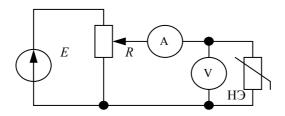
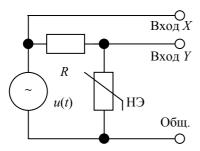


Рис. 1. Схема исследуемой цепи

- 2. Повторить п. 1 с использованием в качестве НЭ лампы накаливания.
- 3. Повторить п. 1 с использованием в качестве НЭ стабилитрона, включив его в прямом направлении.
- 4. Повторить п. 1 с использованием в качестве НЭ стабилитрона, включив его в обратном направлении.
- 5. Взять в качестве НЭ лампу накаливания и включить параллельно с ней резистор из состава стенда с сопротивлением, близким к 150 Ом. Провести измерения тока в неразветвлённой части цепи при напряжениях на параллельном участке, взятых из столбца U_2 (для лампы накаливания). Результаты измерений занести в табл. 1 (столбец HL|R).
- 6. Взять в качестве НЭ лампу накаливания и включить последовательно с ней резистор из состава стенда с сопротивлением, близким к 60 Ом. Провести измерения суммарного напряжения на лампе и резисторе при значениях тока, взятых из столбца I. Результаты измерений занести в табл. 1 (столбец $HL \rightarrow R$).
- 7. Построить BAX варистора, лампы накаливания и стабилитрона, выбрав соответствующие масштабы на осях координат. Для варистора и лампы накаливания построить обратные ветви BAX по значениям U_1 и U_2 в третьей координатной четверти аналогично их прямым ветвям. Для стабилитрона использовать значения $U_{\rm пр}$ и $U_{\rm обр}$, взятые из соответствующих столбцов табл. 1.

Таблица 1


No	І, мА	Варистор	Лампа	Стаби,	литрон	HL R	$HL \rightarrow R$
Π/Π	I, MA	U_1 , B	U_2 , B	$U_{\rm np},{ m B}$	$U_{\text{обр}}$, В	I_0	U_0
1	10						
2	20						
3	30						
4	40						
5	50						
6	60						
7	70						
8	80						
9	90						
10	100						
11	110						
12	120						
13	130						
14	140						
15	150						

8. Построить в одной системе координат ВАХ лампы накаливания с подключенными резисторами (столбцы HL||R| и $HL\rightarrow R$). Провести соответствующие расчёты для 1, 4, 8 и 12-й точек ВАХ (соответствующие строки табл. 1). Проверить соответствие экспериментальных и расчётных значений. Объяснить причину расхождения.

9. Собрать цепь согласно рис. 2 для получения ВАХ полупроводникового стабилитрона на экране осциллографа, который должен работать в двухкоординатном режиме. Точность такого метода ниже, чем предыдущего, однако качественно ВАХ получается практически мгновенно после включения приборов.

Рис. 2. Схема исследования нелинейного элемента с помощью осциллографа

Значение сопротивления резистора некритично, необходимо соблюдать условие, чтобы рабочий ток диода не превы-

шал предельно допустимого значения для данного типа диода. Величина напряжения u(t) определяется чувствительностью канала горизонтального отклонения осциллографа.

Сравнить ВАХ стабилитрона, полученную двумя способами. Объяснить причину расхождений.

Содержание отчёта

- 1. Схемы исследуемых электрических цепей.
- 2. Заполненные таблицы с результатами измерений.
- 3. ВАХ исследуемых элементов.
- 4. Результаты расчётов.
- 5. Выводы.

Контрольные вопросы

- 1. Как классифицируются нелинейные элементы?
- 2. Где применяются нелинейные элементы?
- 3. Что понимают под ВАХ нелинейного элемента?
- 4. Как определяются R_d и R_{cr} и с какой целью это делается?
- 5. Нарисовать схему простейших стабилизатора тока и напряжения и объяснить их принцип действия.
- 6. Как составить схему замещения нелинейного элемента, зная его рабочую точку?

Литература: [1], с. 404 – 417; [2], с. 26 – 38.

Лабораторная работа 8

ИССЛЕДОВАНИЕ ЦЕПЕЙ С ИНДУКТИВНО СВЯЗАННЫМИ ЭЛЕМЕНТАМИ

Цель работы: Освоение методики определения параметров катушек индуктивности с помощью омметра, амперметра и вольтметра; экспериментальное исследование цепей с последовательным и параллельным соединением индуктивно связанных катушек. Освоение методики определения взаимной индуктивности катушек и построения векторных диаграмм для цепей с индуктивной связью.

Оборудование и приборы:

- 1. Генератор НЧ.
- 2. Омметр.
- 3. Амперметр 0...0,2 А.
- 4. Вольтметр 0...15 B.
- 5. Трансформатор без магнитопровода.

Пояснения к выполнению работы

Изучить разделы учебника: расчёт электрических цепей при наличии в них магнитно-связанных катушек; последовательное соединение двух магнитно-связанных катушек; определение взаимной индуктивности опытным путём.

Порядок выполнения работы

1. Измерить сопротивления катушек L_1 , L_2 с помощью омметра; вычислить сумму сопротивлений катушек L_1 , L_2 и записать полученную величину в табл. 1.

Таблица 1

№ опыта			Измерения			I	Вычисления	
	R_1	R_2	R	I	Z	X	L	

	Ом	В	A	O	M	Гн
1						·
2						<u></u>

- 2. Собрать цепь согласно рис. 1. Установить напряжение на выходе генератора НЧ в пределах 5...10 В при частоте 1 к Γ ц.
- 3. Измерить напряжение и ток при первом варианте включения катушек, записать измеренные величины для первого опыта. Поменять местами выводы катушки L_2 (правой в схеме рис. 1), провести измерения и записать данные для второго опыта. При отсутствии маркировки одноименных выводов обмоток согласному включению соответствует меньшее значение тока в катушках.

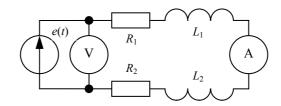


Рис. 1. Схема цепи для измерения коэффициента взаимоиндукции первым способом

4. Провести расчёты Z, X, L для частоты, на которой проводились измерения. Вычислить коэффициент взаимоиндукции по первому способу по формуле:

$$M = (L_{\text{согл}} - L_{\text{встр}})/4.$$

- 5. Построить в одинаковом масштабе векторные диаграммы для согласного и встречного включения катушек.
- 6. Собрать цепь согласно схеме рис. 2 для измерения коэффициента взаимоиндукции по второму способу. Провести измерения I_1 , U_2 . Вычислить коэффициент взаимоиндукции по второму способу по формуле:

$$M = U_2/(\omega I_1)$$
.

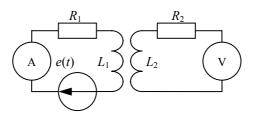


Рис. 2. Схема цепи для измерения коэффициента взаимоиндукции вторым способом

- 7. Сравнить значения коэффициента взаимоиндукции, измеренные по первому и второму способам. Провести анализ полученных результатов.
 - 8. Вычислить значение коэффициента связи по формуле:

$$K = M/(L_1L_2)^{1/2}$$
.

Значение M взять из результатов первого способа.

Содержание отчёта

- 1. Схемы исследуемых электрических цепей.
- 2. Заполненная таблица с результатами измерений.
- 3. Результаты расчётов, векторные диаграммы.
- 4. Выводы.

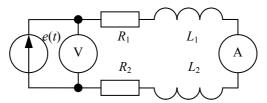


Рис. 1. Схема цепи для измерения коэффициента взаимоиндукции первым способом.

Контрольные вопросы

- 1. Сформулировать закон электромагнитной индукции.
- 2. Как с помощью амперметра, вольтметра, омметра определить параметры катушки R, Z, X_L , L?
- 3. Какое включение катушек индуктивности называется согласным?
- 4. Какое включение катушек индуктивности называется встречным?
- 5. Как по результатам опытов для последовательного соединения индуктивно связанных катушек при неизменном напряжении определить характер их включения (согласное или встречное)?
 - 6. Как определить характер их включения при неизменном во всех опытах токе?
 - 7. Какие зажимы катушек называются одноимёнными?
 - 8. Как их определить экспериментально?
 - 9. Как опытным путём определить взаимную индуктивность?

Литература: [1], с. 119 – 125.

Лабораторная работа 9

ИССЛЕДОВАНИЕ ПАССИВНЫХ СИММЕТРИЧНЫХ ЧЕТЫРЁХПОЛЮСНИКОВ

Цель работы: Экспериментальное определение коэффициентов системы уравнений пассивного четырёхполюсника в *А*-форме и его характеристических параметров.

Оборудование и приборы:

- 1. Генератор НЧ.
- 2. Миллиамперметр переменного тока 0,2 А.
- 3. Вольтметр переменного тока 10 В.
- 4. Осциллограф.

Пояснения к выполнению работы

Изучить разделы учебника: различные формы записи уравнений четырёхполюсника; определение коэффициентов A-формы записи уравнений четырёхполюсника; постоянная передачи и единицы измерения затухания.

Коэффициенты системы уравнений четырёхполюсника и его характеристические параметры связаны с параметрами элементов, из которых составлен четырёхполюсник, и могут быть рассчитаны по их значениям, а также определены экспериментально.

Для экспериментального определения характеристического сопротивления симметричного четырёхполюсника \underline{Z}_{c} и постоянной передачи $\underline{\Gamma}$, а также коэффициентов A-формы необходимо найти его входное сопротивление в предельных режимах, т.е. в режимах холостого хода \underline{Z}_{k} и короткого замыкания \underline{Z}_{k} . A-параметры симметричного четырёхполюсника

$$\underline{A} = \underline{D} = \sqrt{\frac{\underline{Z}_x}{\underline{Z}_x - \underline{Z}_K}}; \underline{B} = \underline{A}\underline{Z}_K; \underline{C} = \frac{\underline{A}}{\underline{Z}_X}.$$

Характеристическое сопротивление

$$\underline{Z}_c = \sqrt{\underline{Z}_x \, \underline{Z}_{\kappa}} = \sqrt{\underline{\underline{B}}_C}.$$

Постоянная передачи $\underline{\Gamma} = \ln[\underline{A} + (\underline{BC})^{1/2}]$

Пример расчёта. Симметричный Т-образный четырёхполюсник (рис. 1) составлен из следующих элементов: $\underline{Z}_{1T} = \underline{Z}_{2T} = \underline{Z}_{T} = 10$ Ом; $\underline{Z}_{0T} = -j10$ Ом. Определить коэффициенты A-формы и характеристические параметры.

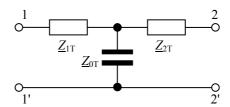


Рис. 1. Схема симметричного Т-образного четырёхполюсника

Коэффициенты А-формы могут быть найдены из следующих выражений:

$$\underline{A} = \underline{D} = 1 + (\underline{Z}_{1T} / \underline{Z}_{0T}) = 1 + (10 / -j10) = 1 + j = 1,41e^{j45^{\circ}};$$

$$\underline{B} = \underline{Z}_{1T} + \underline{Z}_{2T} + (\underline{Z}_{1T}\underline{Z}_{2T} / \underline{Z}_{0T}) = 10 + 10 + (100 / -j10) = (20 + j10) \text{ OM};$$

$$\underline{C} = 1/\underline{Z}_{0T} = (1 / -j10) = j0,1 \text{ Cm}.$$

Характеристическое сопротивление симметричного четырёхполюсника

$$\underline{Z}_c = \sqrt{\frac{\underline{B}}{C}} = \sqrt{\frac{20 + j10}{j0,1}} = 14,95e^{-j31,75^{\circ}} = (12,75 - j7,87) \text{ Om.}$$

Постоянная передачи

$$\underline{\Gamma} = \ln(\underline{A} + \sqrt{\underline{BC}}) = \ln[1 + j + \sqrt{(20 + j10)j0,1}] = \ln 2.9e^{j51.75^{\circ}} = \ln 2.9e^{j0.9};$$

$$a = \ln 2.9 = 1.06 \text{ Hm}; b = 0.9 \text{ pag} = 51.75^{\circ}.$$

При расчётах по приведённым формулам постоянную ослабления выражают в неперах (Нп), а постоянную фазы – в радианах (рад). Измерительную аппаратуру градуируют в децибелах и градусах, причём 1 Нп = 8,68 дБ; 1дБ = 0,115 Нп; 1 рад = $57,3^{\circ}$; $1^{\circ} = 0,017452$ рад.

Порядок выполнения работы

1. Собрать цепь согласно рис. 2. В качестве Z_{1T} , Z_{2T} и Z_{0T} взять резисторы и конденсатор из состава стенда, удовлетворяющие условию $Z_{1T} \approx Z_{2T} \approx Z_{0T}$ на частоте 1 кГц. Нагрузку \underline{Z}_{C} не подключать. В качестве датчиков тока R_{π} использовать низкоомные резисторы сопротивлением 0,5...1,0 Ом (знать точное значение не обязательно). Провести расчёты коэффициентов \underline{A} , \underline{B} , \underline{C} , \underline{D} , а также параметров \underline{Z}_{C} , \underline{a} и \underline{b} по значениям элементов на частоте 1 кГц. Установить выходное напряжение генератора в пределах 5...10 В, в дальнейшем поддерживать его постоянным.

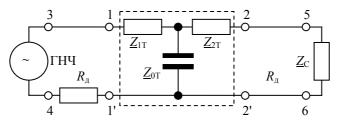


Рис. 2. Схема установки для исследования симметричного Т-образного четырехполюсника

- 2. Вместо перемычки 3–1 включить миллиамперметр, к зажимам 1–1' четырёхполюсника подключить вольтметр, к точке 1 подключить вход канала A, к точке 4 подключить вход канала B двухканального осциллографа. Провести измерения напряжения U_{1x} и тока I_{1x} на входе четырёхполюсника, а также временной сдвиг между напряжением и током Δt_{1x} в режиме холостого хода. Внести данные в табл. 1.
- 3. Замкнуть накоротко зажимы 2–2' четырёхполюсника, повторить действия п. 2, измерив и записав в табл. 1 напряжение $U_{1\kappa}$ и ток $I_{1\kappa}$ на входе четырёхполюсника, а также временной сдвиг между напряжением и током $\Delta t_{1\kappa}$ в режиме короткого замыкания.
 - 4. Рассчитать ϕ_x , ϕ_K , Z_X и Z_K по формулам:

$$\varphi = (2\pi \cdot \Delta t)/T$$
 рад или $\varphi = (360 \cdot \Delta t)/T$ град; $T = 1/f$; $Z = U/I$; $\underline{Z} = Ze^{j\varphi}$.

Таблица 1

		Измерения		Вычисло	ения
Режим	U_1 , B	I_1 , MA	Δt_1 , мс	φ₁, град	<u>Z,</u> Ом
X.X.					
К.З.					

Внести данные в табл. 1.

5. По известным значениям R, C, f вычислить величины $\underline{Z}_{\rm T} = \underline{Z}_{\rm 1T} = \underline{Z}_{\rm 2T}$ и $\underline{Z}_{\rm 0T}$, а также коэффициенты $\underline{A} = \underline{D}$, \underline{B} , \underline{C} , характеристическое сопротивление $\underline{Z}_{\rm C} = R_{\rm C} + jX_{\rm C}$, постоянную передачи $\underline{\Gamma}$, постоянную ослабления a и постоянную фазы b по формулам, приведённым ранее. Внести данные в табл. 2.

Таблица 2

	$\underline{Z}_{\mathrm{T}}$	\underline{Z}_{0T}	<u>A</u>	<u>B</u>	<u>C</u>	<u>Z</u> C	R_{C}	$X_{\rm C}$	Γ	C	ı	b	1
	Ом		-	Ом	См	Ом			Нп	дБ	рад	0	
ĺ													

6. Разомкнуть перемычку 2–5, на её место включить второй миллиамперметр. Подключить к клеммам 5, 6 нагрузку $\underline{Z}_{\rm C} = R_{\rm C} + j X_{\rm C}$, составленную из резисторов и конденсаторов стенда. К зажимам 2–2' подключить второй вольтметр. К точке 1 подключить вход канала A, к точке 2 подключить вход канала B осциллографа. Провести измерения $U_{\rm 1C}$, $U_{\rm 2C}$, $I_{\rm 1C}$, $I_{\rm 2C}$, $\Delta t_{\rm 12C}$ (напряжения и токи на входе и выходе четырёхполюсника, а также временной сдвиг между входным $U_{\rm 1C}$ и выходным $U_{\rm 2C}$ напряжениями при согласованной нагрузке $\underline{Z}_{\rm H} = \underline{Z}_{\rm C}$). Внести данные в табл. 3.

		Измерен	ия	Вычисления				
$U_{1\mathrm{C}}$	$U_{ m 2C}$	$I_{1\mathrm{C}}$	$I_{ m 2C}$	Δt_{12C}	$\ln(U_{1\mathrm{C}}/U_{2\mathrm{C}})$	$\ln(I_{1\mathrm{C}}/I_{2\mathrm{C}})$	ϕ_{12}	
	Ом	М	A	мс	ı	ı	град	

- 7. Вычислить величины $\ln(U_{1\text{C}}/U_{2\text{C}})$, $\ln(I_{1\text{C}}/I_{2\text{C}})$, ϕ_{12} . Сравнить эти значения с полученными ранее значениями a и b. Объяснить различие результатов.
- 8. Выполнить эксперименты в программе **EWB**. Открыть файл lab_4pol.ewb. Схема цепи соответствует рис. 3. Установить значения элементов цепи лабораторного стенда Z_{1T} , Z_{2T} , Z_{0T} .
- 9. Переключатель S1 установить в положение «ВЫКЛ.» с помощью клавиши «ПРОБЕЛ». Включить питание. Провести измерения в режиме холостого хода: напряжения U_{1x} и тока I_{1x} на входе четырёхполюсника, а также временной сдвиг между напряжением и током Δt_{1x} с помощью осциллографа, а также угол ϕ между напряжением U_{1x} и током I_{1x} с помощью Боде-плоттера в режиме фазометра. Внести данные в табл. 4.
- 10. Переключатель S1 установить в положение «ВКЛ.» с помощью клавиши «ПРОБЕЛ». Повторить действия п. 9 для режима короткого замыкания на выходе.

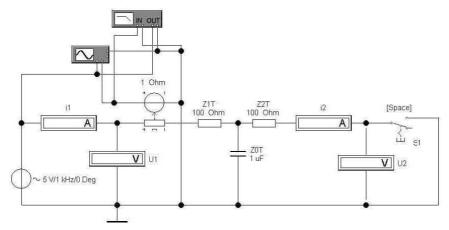


Рис. 3. Исследование четырёхполюсника (моделирование в программе EWB)

		Изме	Вычисления			
Режим	U_1 , B	<i>I</i> ₁ , мА	Δt_1 , мс	φ ₁ , град	φ ₁ , град	<u>Z</u> , Ом
X.X.						
К.З.						

11. Переключатель S1 установить в положение «ВЫКЛ.» с помощью клавиши «ПРОБЕЛ». Подключить параллельно вольтметру U2 согласованную нагрузку $\underline{Z}_{\mathbb{C}} = R_{\mathbb{C}} + jX_{\mathbb{C}}$, составленную по данным табл. 2. Включить питание.

Провести измерения U_{1C} , U_{2C} , I_{1C} , I_{2C} , Δt_{12C} и ϕ_{1C} (напряжения и токи на входе и выходе четырёхполюсника, а также временной и угловой сдвиг между входным U_{1C} и выходным U_{2C} напряжениями при согласованной нагрузке $\underline{Z}_{H} = \underline{Z}_{C}$). Внести данные в табл. 5.

12. Вычислить величины $\ln(U_{1\text{C}}/U_{2\text{C}})$, $\ln(I_{1\text{C}}/I_{2\text{C}})$, ϕ_{12} . Сравнить эти значения с полученными ранее значениями a и b. Объяснить различие результатов.

Таблица 5

		Изм	ерения	Вычисления				
U_{1C}	$U_{ m 2C}$	I_{1C}	$I_{2\mathrm{C}}$	Δt_{12C}	φ _{1C}	$ln(U_{1C}/U_{2C})$	$ln(I_{1C}/I_{2C})$	ϕ_{12}

Содержание отчёта

- 1. Схемы исследуемых электрических цепей.
- 2. Заполненные таблицы с результатами измерений.
- 3. Результаты расчётов.
- 4. Выводы.

Контрольные вопросы

- 1. Какими величинами характеризуется четырёхполюсник?
- 2. Какие существуют формы записи уравнений четырёхполюсника?
- 3. Каков физический смысл параметров <u>А, В, С, D</u> А-формы записи четырёхполюсника?
- 4. Каким образом можно рассчитать параметры четырёхполюсника по опытам холостого хода и короткого замыкания?
 - 5. Какую величину называют характеристическим сопротивлением четырёхполюсника?
 - 6. Какую величину называют постоянной передачи четырёхполюсника?
 - 7. В чём заключается физический смысл постоянной ослабления и постоянной фазы?

Литература: [1], с. 135 – 147.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Бессонов, Л.А. Теоретические основы электротехники. Электрические цепи : учебник / Л.А. Бессонов. 10-е изд. М. : Гардарики, 2002. 638 с.
- 2. Иванов, И.И. Электротехника: учебник / И.И Иванов, Г.И. Соловьев, В.С. Равдоник. 2-е изд., перераб. и доп. СПб.: Изд-во «Лань», 2003. 496 с. (Учебники для вузов. Специальная литература).
- 3. Чернышов, Н.Г. Моделирование и анализ схем в Electronics Workbench : учеб.-метод. пособие / Н.Г. Чернышов, Т.И. Чернышова. Тамбов : Изд-во Тамб. гос. техн. ун-та, 2005. 52 с.